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ABSTRACT 

There is a need for a standard, accurate test bench for 

inertia-based orientation sensors.  Static accuracy testing 

of these sensors is straightforward but dynamic accuracy 

testing is more difficult.  A test bench system is developed 

with encoders and a PC104 computer under the QNX Neutrino 

real-time operating system.  A MicroStrain 3DM-GX1 inertial 

sensor was used as the sensor to be tested.  The dynamic 

error of this sensor was accurately recorded and found to be 

a function of the sensor velocity and acceleration. 
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EXECUTIVE SUMMARRY 

The purpose of this project was to develop a control 

systems environment complete with encoder capabilities on a 

PC104.  This system’s capabilities were tested by using it 

to measure the dynamic accuracy of the MicroStrain 3DM-GX1 

orientation sensor against the benchmark of an encoder.  The 

digital input/output and the digital-to-analog conversion 

circuits and the RS-232 port of the PC104 were used to 

accomplish this task.   

In this project, a Diamond Systems Prometheus PC104 

with a data acquisition circuit was used as a target 

machine.  The main encoder used was a 16-bit absolute 

encoder by Gurley Precision Instruments.  The encoder 

communication and control was performed with the digital 

input/output circuit.  The MicroStrain 3DM-GX1 sensor 

communications all occurred through the RS-232 port.  The 

MicroStrain sensor was attached to the end of a wooden 

pendulum and the encoder served as the pivot point of this 

pendulum.  This allowed the angles of the two sensors to 

move synchronously with one another.  The pendulum was set 

in motion and the position of the two sensors were recorded 

and output to a MATLAB compatible file. 

The results yielded an error of the MicroStrain sensor 

well within the specifications established by the company.  

The worst error was 1.3019° when the pendulum was at a 

length of one foot.  It was discovered that the error is a 

function of the velocity, acceleration, and flexure of the 

pendulum. 
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I. INTRODUCTION  

A. MOTIVATION 

The motivation for this thesis originates from two 

different driving sources, the need for a PC104 controls 

environment at the United States Naval Academy and the need 

for a standard, accurate test bench for inertia-based 

orientation sensors. 

Currently, the United States Naval Academy Systems 

Engineering Department uses the Rabbit 2000 microprocessor 

as a control systems platform.  This system has many 

limitations that create the need for a newer, more powerful 

system.  The first major limiting factor of the embedded 

systems the school currently has is the limit of control 

routine execution rate.  The systems currently used are not 

able to execute control routines any faster than 

approximately 1 kHz.  This speed is fast enough for most 

routines used but there are many new routines that could be 

executed if the control routine could execute at a faster 

rate.  Other limiting features include difficulty 

interfacing with MATLAB, communication speed, portability, 

and minimal data storage.  A PC104 with a data acquisition 

circuit would be the solution.  For this system to be 

incorporated into that classroom at the Naval Academy, the 

complexities of the inter-circuit and inter-system 

programming must first be reduced into simple user-friendly 

function calls.  A class of functions that operate the 

digital to analog converters, analog to digital converters, 

digital input/output, and encoder input are necessary.  
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Without this type of function library the students would 

need a much more extensive knowledge base in computer 

programming and operation.  A complied function library will 

allow users with basic computer programming knowledge to 

program a complex control routine on the embedded system. 

The second source of motivation is more of an industry 

wide source.  There is a need for a standard, accurate test 

bench for inertial sensor units, as Yun and Bachmann 

identified in Ref. 1.  The MARG project at the Naval 

Postgraduate School shows a 9° error between the inertial 

sensor and the test bench.[1]  The paper in reference 1 

indicates the error is greatest during the dynamic motion 

periods.  One of the problems is the test bench does not 

give output of the angle.  The test apparatus can only be 

set to turn to specific angles.  The intermittent position 

information is not available.  This means the position of 

the test bench must be modeled.  In the case of reference 1, 

the test bench motion is modeled as linear motion.  This is 

not a correct model because the test bench must accelerate 

and decelerate.  The lack of this information could be the 

cause of the error discovered.  Creating a test bench that 

is capable of recording or outputting intermittent position 

information would eliminate this problem and the error from 

this problem would be reduced, allowing the analysis of the 

sensor to be more accurate. 

The MicroStrain 3DM-GX1 sensor is an inertial-based 

orientation sensor that could be used in the project of 

reference 1.  This sensor has been used in human motion 

tracking in other projects[2].  To model and track the 

information more accurately the error of the sensor would 
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have to be known.  The MicroStrain company does not 

distribute any information about the sensor operation with 

respect to the dynamic motion, besides the dynamic accuracy.  

It is not known exactly how accurate the sensor is during 

motion.  Static accuracy can be easily determined by keeping 

the sensor still and reviewing the output data.  Dynamic 

accuracy is harder to measure because the sensor position 

has to be measured while in motion.  An accurate test bench 

system must be created that will allow the position 

measurement and the sensor readings to be correlated as 

closely as possible.  An encoder in conjunction with a fast 

and powerful control system would allow this analysis. 

B. GOALS 

The main goals of the project are: 

• Develop a user-friendly controls environment on a 
PC104, complete with data input and output. 

• Develop and create a test bench for inertia-based 
orientation sensor. 

• Develop an interrupt service routine that will 
service the serial universal asynchronous receiver 
transmitter, compatible with the RS-232 standard. 

• Test the dynamic accuracy of the MicroStrain 3DM-
GX1 orientation sensor. 

C. CHAPTER DESCRIPTIONS 

Chapter I is the introduction and motivation for this 

project. 

Chapter II discusses most platform specific 

information.  It gives a background and description of the 

PC104 used in this project.  It also describes the QNX 
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Neutrino operating system and a short introduction to what a 

real-time operating system is and why this project requires 

such an operating system. 

Chapter III describes in detail all the apparatus used 

or developed in the project.  It discusses the host machine, 

the target PC104 input, output, and boot indication program, 

the MicroStrain 3DM-GX1 sensor, the encoders used in the 

project and finally the pendulum constructed. 

Chapter IV describes all the test related information.  

This chapter is where the actual setup of the apparatus is 

discussed.  A complete description of the data acquisition 

program and the attached interrupt service routine is 

included.  The chapter finishes with plots and explanation 

of all the results. 

The final chapter, Chapter V, contains the conclusions 

and the recommendations for future work. 

Appendix A is a complete version of the 16-Bit encoder 

program used to record the MicroStrain 3DM-GX1 sensor 

dynamic error.  The entire code was written in C++. 

Appendix B is a complete version of the control.wse 

file which contains many of the functions created and used 

in this project.  
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II. PLATFORM INTRODUCTION 

A. THE PC104 

1. Introduction 

The heart of this project is a PC104.  It is the system 

that controls and records all information needed to make 

observations and calculations.  The PC104 interacts with the 

apparatus to be tested through digital input/output (DIO) 

ports, analog to digital converters (ADC), and digital to 

analog converters (DAC). 

2. Background 

The PC104 technology was first created in 1987 by Ampro 

Computers.[3]  This company was founded in 1983 for the 

purpose of manufacturing compact single board computers to 

be used in embedded systems.  The MiniModule was the first 

PC compatible embedded system with the capability of modular 

expansion.  For the purpose of this thesis PC refers to 

Personal Computer, a term and standard developed by the IBM 

company.  The form factor of the MiniModule is one of the 

features that classified it as the first PC104.  The actual 

board measured 3.6 inches by 3.8 inches, which is now the 

PC104 form factor.[3] 

Even though the first PC104 was produced in 1987 it was 

not a common system in the embedded control industry until 

the PC104 Consortium was founded by 12 companies in February 

1992.[4]  A month later, in March 1992, the PC104 Consortium 
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published the “PC104 Specifications” which established and 

launched the vast popularity of this new standard.[4] 

The PC104 gets its name from some of its more 

distinguishing specifications.  The system is compatible 

with any computer compatible with the PC standard introduced 

by IBM.  The second part of the name is derived from the pin 

specification for inter-module communication.  There is a 

set configuration of 104 pins which enables communication 

between the CPU module and any other module. 

3. Prometheus PC104 

The PC104 used in this project is a Diamond Systems 

Prometheus PC104.  It was selected because it has a powerful 

data acquisition board packed with it.  The operating system 

is the QNX Neutrino 6.2.1 real-time OS.  It has an internal 

6 GB hard drive connected to the IDE port.  The hard drive 

has a separate power supply and is not housed within the 

vendor supplied PC104 casing.  The hard drive is too large 

to fit inside.  The OS was loaded onto the hard drive while 

it was connected to anther desktop PC.  This method of 

loading the OS was easier than connecting a CD-ROM directly 

to the PC104.  Once the OS was loaded, the hard drive was 

connected to the PC104. 

The specifications of the PC104 were taken directly 

from the Prometheus CPU user manual in Ref. 5: 

Processor Section 

♦ 486-DX2 processor running at 100MHz with co-
processor 

♦ Pentium class platform including burst-mode SDRAM 
and PCI-based IDE controller and USB 

♦ 32MB SDRAM system memory 
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♦ 50MHz memory bus for improved performance 

♦ 2MB 16-bit wide integrated flash memory for BIOS 
and user programs 

♦ 8KB unified level 1 cache 

I/O 

♦ 4 serial ports, 115.2kbaud max 

♦ 2 ports 16550-compatible, 2 ports 16850-compatible 
with 128-byte FIFOs 

♦ 2 full-featured powered USB ports 

♦ 1 ECP-compatible parallel port 

♦ Floppy drive connector 

♦ IDE drive connector (44-pin version for notebook 
drives) 

♦ Accepts solid-state flashdisk modules directly on 
board 

♦ 100BaseT full-duplex PCI bus mastering Ethernet 
(100Mbps) 

♦ IrDA port (requires external transceiver) 

♦ PS/2 keyboard and mouse ports 

♦ Speaker, LEDs 

System Features 

♦ Plug and play BIOS with IDE autodetection, 32-bit 
IDE access, and LBA support 

♦ Built-in fail-safe boot ROM for system recovery in 
case of BIOS corruption 

♦ User-selectable COM2 terminal mode 

♦ On-board lithium backup battery for real-time-
clock and CMOS RAM 

♦ ATX power switching capability 

♦ Programmable watchdog timer 

♦ Power surge monitor for fail-safe operation 

♦ Zero wait-state capability for flash memory and 
PC/104 bus 

♦ +5V-only operation 
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♦ Extended temperature range operation (-40 to 
+85oC) 

♦ Cable-free operation when used with Diamond 
Systems’ PNL-Z32 Panel I/O board 

 

The PC104 also has a data acquisition circuit for I/O 

operations.  This circuitry communicates with the PC104 

through the ISA bus.  The circuit diagram of the Prometheus, 

which depicts this circuit, is seen in Figure 1.  More 

details of the data acquisition circuit are discussed in a 

later chapter. 

 
Figure 1.   Prometheus PC104 Block Diagram [From Ref. 5]. 
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A photo of the actual PC104 used in this project is 

seen in Figure 2.   

 
Figure 2.   Actual PC104 Used in the Project. 

 

B. THE QNX OPERATING SYSTEM 

1. Introduction 

The operating system (OS) that was used for this 

project was QNX Neutrino Real-Time Operating System (RTOS) 

version 6.2.1A.  It is bundled with the QNX Momentics 

Professional Edition Integrated Development Environment 

(IDE).  This operating system was chosen because it is a 

real-time OS and it was free through an education grant 

given by the QNX Software Systems Company. 
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2. QNX Neutrino RTOS v.6.2.1A 

The QNX Neutrino v 6.2 was developed and released in 

2002.  QNX was founded in 1980 and since then has been the 

leader in the industry of real-time microkernel operating 

systems.[6]  The real-time microkernel aspect of the OS is 

vitally important to the application described in this 

thesis.  A deterministic execution of code under an RTOS 

allows the recording and syncing of the measurements between 

two different I/O devices to be as close as possible. 

One of the main advantages of an RTOS is its 

predictability.  An RTOS is designed to guarantee the 

execution of a computation in a reasonable amount of time if 

there are no external influences, such as interrupts.  Since 

external influences such as interrupts can be disabled, the 

programmer has the ability to ensure a deterministic 

execution environment by implementing the proper setting.  

This may be disabling all interrupts or at least controlling 

necessary interrupts.  This extent of control ensures that 

any delays in a system are not caused by the OS.[7] 

The deterministic timing and execution of instructions 

relies partly on the scheduling scheme of the OS.  A 

prioritized system of scheduling must be utilized.  Higher 

priority items must be allowed to execute before lower 

priority items.  This is a necessity for an RTOS.  This 

gives the OS a way to ensure that all real-time sensitive 

instructions are actually executed deterministically.  A 

real-time thread or process would be assigned a higher 

priority to ensure that it is executed when it needs to.  

The only thing that would be able to potentially interrupt 

this execution would be a system call.[7] 
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Priority inversions must also be controlled in an RTOS.  

This is where a high priority thread is trying to use a 

resource that is already allocated to a low priority thread 

and a medium priority thread is executing.  In this case, 

the low priority thread would not be allowed to complete and 

free the resources until the medium thread resource is 

completed first.  This would cause many problems with the 

system and cause the system to lose its real-time 

characteristic.  High priority threads are usually threads 

designed to run real-time.  If the thread has to wait for 

lower priority threads to complete first, timing of the high 

priority thread would no longer be guaranteed.  To ensure a 

system is real-time, priority inversion must be controlled 

in such a way that a real-time thread will never have to 

wait for a lower priority thread.  This is either 

accomplished by the lower priority thread giving up the 

resource or the lower priority thread taking on the higher 

priority’s priority through priority inheritance.[7] 

Another requirement for a real-time operating system is 

for the system to have a periodic division of processor time 

that can be allocated to processes.  A portion of this time 

must be reserved for real-time processes.  It must also 

ensure that non-schedulable instructions, such as 

microkernel calls, must not violate this time limit.  When 

any instruction executes, whether it is in a kernel call, a 

real-time activity, or non-real-time activity, if it takes 

more than the predetermined period of time it starts to 

affect the characteristics of a real-time system.  No longer 

are all execution times guaranteed because real-time 

processes are not able to execute when expected.  This is 

true even for other real-time processes.  If there are two 
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real-time processes running at the same time, they must 

equally share the time on the processor.  If they do not, 

one of the processes will start to show non-real-time 

characteristics because the execution will not start when 

expected.  Under an RTOS, programs are designed to run on a 

strict schedule because the time between executions is 

critical for some particular reason.[7] 

Steve Furr develops five critical system requirements 

for an RTOS in his paper What is Real Time and Why Do I Need 

It? from Ref. 7: 

1 The OS must support fixed-priority preemptive 
scheduling for tasks (both threads and processes, 
as applicable). 

2 The OS must provide priority inheritance or 
priority-ceiling emulation for synchronization 
primitives. 

3  The OS kernel must be pre emptible. 

4 Interrupts must have a fixed upper bound on 
latency. 

a. By extension, support for nested 
interrupts is required. 

5 Operating system services must execute at 
apriority determined by the client of the 
service. 

a. All services on which the client is 
dependent must inherit that priority. 

b. Priority inversion avoidance must be 
applied to all shared resources used by the 
service. 
 

Requirement 1 indicates that scheduling must be fixed 

priority and preemptive.  A scheduling priority is 

definitely needed, as discussed earlier.  The fixed priority 

is a more well-defined requirement.  It is required to be 

fixed so that there is a set standard and structure for the 
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programmer to follow when designing a real-time program and 

application.  This standard fixed priority allows the 

programmer to run the program at a known priority, allowing 

real-time execution.  The second half of this requirement is 

also very important.  If a lower priority process is taking 

too long, or a higher priority process must execute, then 

there must be a way for immediate execution.  This is 

accomplished with the preemptive nature of the scheduling 

routine.  Preemptive scheduling allows the operating system 

to halt a currently running process or thread and execute a 

higher priority process or thread, after which it restores 

the state of the halted process or thread and it is able to 

continue execution.  This is important because it is another 

characteristic of the OS that ensures the timing guarantee 

of an RTOS. 

Requirement 2 was discussed earlier in the paper.  

Essentially, there must be priority inheritance to avoid a 

priority inversion condition. 

The third requirement further extends the bounds of the 

first requirement.  The kernel is a type of layer that 

allows interaction between system critical hardware and the 

programs.  It controls communication between programs and 

hardware such as the CPU, memory, and other devices.  Since 

is it conceivable that many programs will have some type of 

interaction with one of these system critical hardware 

devices, it makes sense that the kernel must have preemption 

capabilities.  If a real-time process relies on a kernel 

call for proper real-time execution, the kernel must be able  
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to preempt a currently running process or thread.  This 

helps to guarantee discrete execution of the real-time 

process or thread. 

The fourth requirement is needed to limit the invasion 

of interrupts.  In real-time operating systems, interrupts 

are very important.  In many applications, interrupts are 

used to guarantee the operation is performed at a real-time 

pace.  This will be the case in this project.  The majority 

of the program is run by interrupts.  If the interrupts are 

processed instantly and are not very complicated, the system 

will operate at a predictable, deterministic rate.  For 

interrupts to occur in a real-time OS and not affect the 

real-time characteristic, the interrupt handler must respond 

quickly.  This is the reason to place an upper limit on the 

latency.   

The final requirement extends the earlier discussion 

about priorities of the OS services.  Under a real-time OS, 

all processes, thread, and operations must execute in a 

controlled, deterministic manner. 

The QNX Neutrino OS has all of the characteristics.  

This means if a program is created and run properly, it will 

run in real-time.  This is crucial for this project because 

the exact time and sensor positions must be recorded.  If 

there is any delay in the program the time and the position 

may not correlate.  In this project there are two sensors 

being read and correlated with time and position, so it is 

even more vital that the program runs in real-time. 

The entire program will be written in C++ with the QNX 

Momentics IDE.  When the programs are compiled they will 

execute on the target PC104 system that will be in constant 
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communication with the host Momentics instance through the 

Ethernet connection.  Specific aspects of the communication, 

the program code, and execution will be discussed in later 

chapters. 
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III. THE APPARATUS 

A. HOST MACHINE 

The QNX programming is all performed on a host machine.  

This is necessary because the target machine, the PC104, 

does not have enough memory to run the QNX Momentics 

Integrated Development Environment (IDE).  The PC104 only 

has 32MBs of RAM and the IDE requires far more than that.  

QNX recommends 256MB of RAM. The PC104 uses 19MB of the RAM 

just for the QNX operating system to run.  When the IDE is 

launched on the PC104, the memory is maxed out and the IDE 

will quit loading during its startup phase of loading.  The 

memory is then freed of the partially loaded program.  The 

target’s processor is only 100MHz which would also limit the 

productivity of the system.  While processor speed will not 

necessarily stop the program from loading or working 

correctly, the program will most likely run so slowly that 

productivity would be severely limited. 

The host machine is a Dell Dimension 8100 with an Intel 

Pentium 4, 1.70 GHz processor and 2GB of RAM.  It uses a 3-

Com 100 Base-T Ethernet Card for host to target 

communication.  The only input devices used are a mouse and 

keyboard and the only output device used is the VGA output 

of the on-board graphics card.  This is all exclusive of the 

I/O Ethernet card.  This Dell system has an on-board 

Ethernet card that has been disabled in the BIOS to decrease 

the likelihood of hardware conflicts. 
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B. TARGET MACHINE – PROMETHEUS PC104  

The target machine is the PC104 described a previous 

chapter.  This target machine is the location where all the 

developed code is actually run.  The QNX Momentics IDE can 

be set up to communicate between the host and target 

directly through the Ethernet connection.   

1. Unidirectional Input Devices 

While the PC104 is capable of using a mouse and 

keyboard as input this particular setup does not include 

either.  The purpose of this project is to have a PC104 that 

is entirely remote operable.  A mouse and keyboard would 

serve no purpose in a remote application as the user would 

not have access to them.  The PC104 does not use the USB 

ports because all peripherals are accessed through other 

ports. 

2. Unidirectional Output Devices  

The PC104 does have a VGA adapter card but this card 

was not used for any step other than the initial set up of 

the PC104.  There are some applications where a VGA monitor 

may be useful but because this PC104 setup is designed to be 

operated in a remote environment, most likely the user will 

not be able to be in the same location of the monitor or the 

system will not be able to support the monitor.  Many remote 

applications of this PC104 will not be able to support a 

monitor because of the power requirements.  Many of the 

applications of this PC104 require the lowest possible power 

draw of the system.  Monitors will increase system power 

requirements while not adding much benefit to the system.  
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If a user is in the same location as the PC104, the user 

will be able to remotely log in to the system for 

diagnostics.  When executing code from the host machine, all 

console output is directed to the host machine erasing the 

need for a monitor as a console out for program execution. 

There is one instance when a monitor would be very 

useful, that is the boot phase of the PC104 startup.  Since 

the PC104 only has a 100 MHz processor, it takes much more 

time to boot to the user screen than a modern day personal 

computer does.  Without a monitor it is very difficult to 

know exactly when the machine has finished booting up.  A 

monitor would obviously be one solution to this problem.  

Since this project aims to decrease all power consumption a 

new boot completion technique must be used.  The solution 

was to develop an LED indication of when the system has 

finished booting. 

a. Boot Completion Indicator 

The boot completion indicator output is driven by 

the parallel port.  For this PC104 the parallel port is set 

at location 0x378.  The indicator is a set of eight red LEDs 

that are driven from the power supplied by the port.  Each 

LED is driven by one of the eight data output ports of the 

parallel port.  On a standard 25-pin parallel port the data 

output is seen on pins 2-8.  Ground can be connected to any 

pin between pins 18-25.  This project uses pin 18 for 

ground.  The circuit includes a resistor between the LED and 

the positive end of the supply, as seen in Figure 3.  The 

resistor is there to limit the amount of current that flows 

through the LED. 
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Figure 3.   LED Circuit for boot completion indicator. 

 

LEDs have very low internal resistance and without 

a resistor an LED could draw enough current to either damage 

itself or damage the parallel port hardware.  An array of 

eight LEDs that are all individually controlled by a 

separate output line of the parallel port was the method of 

choice because this helps to decrease false indication of 

the system state.  If only one LED was used there would be a 

higher risk involved that either the LED burned out or that 

particular data line is faulty.  Including all eight 

available lines and eight LEDs lowers the risk that the 

output, either an LED on or off, of the overall system is 

faulty.  A completely faulty indication, in the one LED 

system or the eight LED system, will decrease system 

reliability because the user will not know for sure whether 

the system is fully booted or not. 

The program that was used to operate this 

circuitry is listed below:  

1:  #include <unistd.h> //for delay() 

2:  #include <hw/inout.h> //for out8() 

3:  #include <sys/neutrino.h> //for ThreadCTL() 

4:   

LED 

4.7MΩ 

Supply 
Voltage 



 21

5:  int main() 

6:  { 

7:   //GAIN ROOT PERMISSION FOR I/O CONTROL 

8:   ThreadCTL(_NTO_TCTL_IO,NULL); 

9:   for(int i=0;i<10;i++) //FOR 10 ITTERATIONS 

10:   { 

11:    out8(0x378,0); //All LEDS OFF 

12:    delay(100); //DELAY 100ms 

13:    out8(0x378,255); //ALL LEDS ON 

14:    delay(100); //DELAY 100ms 

15:   } 

16:   return 1; 

17: } 

 

When the program starts it needs to get root 

permission to perform I/O operations.  This is accomplished 

y the call to ThreadCTL() at line 8.  This function is 

specific to the QNX Neutrino operating system.  Once the I/O 

permission is obtained the program continues.  The for loop 

started at line 9 gives the indicator the functionality to 

signal exactly when the OS is fully loaded by blinking ten 

times.  This task is accomplished by the blinking cycle 

contained within the for loop.  The call to out8(0x378,XXX) 

at lines 11 and 13 send an 8 bit output byte to the parallel 

port found at location 0x378.  The second parameter of the 

function is the value of the 8-bit word that is sent.  Zero 

is binary 00000000, meaning all the LEDs will be off because 

all outputs are low (0).  Line 13 sends 255 which is 

11111111, turning all the LEDs in the array on because all 

bits of the parallel port data output are high (1).  When 

the output is high it outputs 5V, enough to turn the LEDs 



 22

on.  When the program completes execution, all LEDs are left 

on because the last data packet sent to the parallel port 

was 255.  This constant burning LED array indicates that the 

PC104 is fully booted and the user may start executing other 

programs.  The array in this state can be found in Figure 4.   

                 
Figure 4.   Boot Completion Indicator. 

 

The LEDs will remain on as long as the user does 

not modify the port within a program.  The operating 

system’s interaction with the parallel port is stopped just 

before the start up indicator program is started.  The OS 

startup script is located at /ect/rc.d/rc.sysinit.  To 

ensure proper operation of the boot indication program the 

line slay devc-par must first be included in rc.sysinit.  

This disconnects the OS handle to the parallel port.  If 

this process is not killed, the OS may interfere with the 
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proper operation of the program, or the lasting effect of 

continuing the LEDs in the on state.  The next line that 

must be added to rc.sysinit is startind.  This line tells 

the OS to start the boot completion indicator program 

execution.  This is how the proper startup of the OS can be 

indicated to the user without the use of a monitor. 

3. Bidirectional Input/Output Devices 

There are four main devices on board the PC104 that are 

bidirectional I/O devices.  They are the serial 

communications device, data acquisition circuit, Ethernet 

communications device, and the universal serial bus (USB) 

device.  The USB ports were not setup or used because they 

serve no immediate benefit to the project. 

a. Ethernet Port and IP Address 

The Ethernet port was established on the target 

with a static IP of 192.168.0.2.  Creating a static IP 

address instead of a dynamic IP address allows the system to 

mesh more easily.  If the IP of the target was not static, 

the user would have to find a way to retrieve the IP 

address.  With no keyboard or monitor in the system it would 

be difficult to retrieve the IP address if it were 

dynamically assigned by an outside device.  Therefore, 

assigning a static IP address is more reliable. 

b. RS-232 Serial Port 

The PC104 system has four RS-232 serial ports on 

the I/O module.  Serial port 1 was used for the 

communications between the PC104 and the MicroStrain sensor.  

The other ports were not needed.  The serial port 1 (COM1) 
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is built into the ZF Micro CPU chip on the PC104 module.  It 

is a 16550 standard serial universal asynchronous 

receiver/transmitter (UART) with a 16-byte first-in-first-

out buffer.[5] Actual communications of this device are 

discussed in a later chapter. 

c. Data Acquisition Circuit 

The data acquisition circuit is part of the 

Prometheus PC104 package.    This is the device that 

performs all of the digital input/output.  This circuit is 

also capable of analog to digital conversions and digital to 

analog conversions.  The complete list of specifications are 

seen below.  This list was taken from the Prometheus User 

Manual, Ref. 5. 

Analog Inputs  
No. of inputs   8 differential or 16 single-ended 

(user selectable) 
A/D resolution    16 bits (1/65,536 of full scale) 
Input ranges    Bipolar: ±10V, ±5V, ±2.5V, ±1.25V 
    Unipolar: 0-10V, 0-5V, 0-2.5V 
Input bias current   50nA max 
Maximum input voltage  ±10V for linear operation 
Overvoltage protection  ±35V on any analog input without 

damage 
Nonlinearity    ±3LSB, no missing codes 
Drift     5PPM/oC typical 
Conversion rate    100,000 samples per second max 
Conversion trigger  software trigger, internal pacer 

clock, or external TTL signal 
FIFO    48 samples; programmable interrupt 

threshold 
Analog Outputs  
No. of outputs    4 
D/A resolution    12 bits (1/4096 of full scale) 
Output ranges   Unipolar: 0-10V or user-

programmable 
    Bipolar: ±10V or user-programmable 
Output current    ±5mA max per channel 
Settling time    4µS max to ±1/2 LSB 
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Relative accuracy    ±1 LSB 
Nonlinearity    ±1 LSB, monotonic 
Digital I/O  
No. of lines    24 
Compatibility    3.3V and 5V logic compatible 
Input voltage   Logic 0: -0.5V min, 0.8V max; 

Logic 1: 2.0V min, 5.5V max 
Input current    ±1µA max 
Output voltage   Logic 0:  0.0V min, 0.4V max; 

Logic 1: 2.4V min, 3.3V max 
Output current    Logic 0: 12mA max;  
    Logic 1: -8mA max 
I/O capacitance    10pF max 
Counter/Timers  
A/D pacer clock    24-bit down counter 
Pacer clock source   10MHz, 1MHz, or external signal 
General purpose    16-bit down counter 
GP clock source    10MHz, 100KHz, or external signal 
General 
Power supply    +5VDC ±5% 
Current consumption  0.7A – 1.1A typical 
Operating temperature  -40 to +85oC 
Operating humidity   5% to 95% noncondensing 

 

A block diagram of the data acquisition circuit 

can be found in Figure 5.   
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Figure 5.   Data Acquisition Block Diagram [From Ref. 5]. 

 

The data acquisition circuit communicates with the 

CPU over the PC104 bus.  All control and communication to 

the circuit is performed through register read and writes, 

as the I/O is mapped to registers.  All of the registers are 

an offset of the base address of the circuit.  In the case 

of this project the base address is 0x280.  I/O time is more 

dependent on the hardware of the circuit than the connection 

between the circuit and the CPU.  Communications with the 

DIO port are very fast because there is no extra conversion 

circuitry needed for the output.  The only ports that will  
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be used in this project are the digital input/output ports 

A, B, and C.  The encoders will be attached to and driven by 

these lines.   

C. MICROSTRAIN SENSOR 

1. Background Information 

The MicroStrain sensor used in this project is the 3DM-

GX1 Microminiature Sensor created by MicroStrain, Inc. in 

Williston, Vermont.[8]  The sensor is a three degrees of 

freedom orientation sensor.  It has a tri-axial angular rate 

sensor or rate gyro, three orthogonal magnetometers, three 

orthogonal accelerometers, and a temperature sensor.  There 

is also a 16-bit analog to digital converter and an onboard 

microcontroller.[9]  This sensor is capable of outputting 

orientation in both static and dynamic applications.  The 

dynamic accuracy is considerably less than the static 

accuracy, as can be seen in the next section.  A photo of 

the sensor can be found in Figure 6.   
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Figure 6.   MicroStrain 3DM-GX1 Sensor. 

 

 

The sensor is capable of RS-232 and RS-485 serial 

output.  It is able to output raw data at a rate of 

350Hz.[9]  It also has the ability to first convert the raw 

data into more useful and recognizable forms such as Euler 

angles, matrix and quaternion before output.  Drift in the 

sensor’s data needs to be continually correct due to the 

error and drift of the gyro sensors.  The error correction 

is calculated based on measurements from the accelerometers 

and the magnetometers.  These two sets of sensors are more 

accurate under a static application and this characteristic 

is used to calculate the correction.[9] 
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2. Specifications 

The following table is the specification table supplied 

by the MicroStrain company. 
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Table 1.   MicroStrain 3DM-GX1 Specifications [From Ref. 

9]. 
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One of the main specifications that is very important 

to this project is the static and dynamic accuracy, which is 

seen in Table 1.  The table indicates the static accuracy is 

±0.5° and the dynamic accuracy is ±2.0°.  This is a 

considerable difference.  One of the main purposes of this 

project is to test this dynamic accuracy.  If the sensor is 

moving quickly, such as in a human motion tracking 

application, the dynamic accuracy has a large impact.  A 

larger uncertainty range will not allow accurate tracking 

and execution of a control routine.[9] 

The sensor range in the table is an acceptable range.  

In a human limb motion tracking application 300° per second 

is more than enough range to capture the normal motion of a 

limb.  In this project, the pendulum designed and created as 

part of the apparatus will not be traveling faster than this 

sensor range.  It will also not be experiencing any motion 

that will create more than ±5G’s of force.[9] 

3. Communications 

This MicroStrain sensor will be using the RS-232 serial 

communications standard for communications with the target 

PC104.  The default communications protocol is RS-232 with 

38.4kbps, no parity, one stop bit, and eight data bits, as 

seen in Table 2.   

 
Table 2.   3dM-GX1 Default RS-232 Format [From Ref. 10]. 
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There are two basic modes of communications with the 

sensor, polled command mode and continuous mode.  Continuous 

mode is where the sensor sends out the requested data 

continuously after the request by the host.  A new data pack 

is transmitted by the sensor after every calculation.  

Calculations are continuously performed allowing the sensor 

to output the data at its maximum rate.  The stream of data 

will have no gaps because the transmission and calculation 

is performed at a set rate by the microcontroller.  The host 

computer must be able to receive and process data at this 

rate or faster because if the host computer is not able to 

keep up with the data rate then there will be data packets 

that are dropped.  If data packets are dropped the process 

that is relying on the data from the sensor will not execute 

correctly.  The user is able to exit this mode of operation 

by issuing a stop command.[10] 

The second mode of communication between the host and 

the sensor is polled mode.  This is the default mode the 

sensor is started in.  It is possible to change this setting 

by writing to the EEPROM onboard the sensor.  Polled mode is 

more interactive with the user.  In this mode the host must 

send commands to the sensor to request data.  The sensor 

will then send the data back to the host.  This method has 

limited accuracy.  When the host issues the request for 

data, the packet that is sent back is the packet that is 

being calculated when the request is received by the sensor.  

This means there is a window of uncertainty that spans the 

calculation cycle time, which is 13.107ms for the current 

configuration of the sensor.[11]  This window of uncertainty 

is relatively large with respect to the acquisition time of 

the encoder.  To get the most accurate time the exact 
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calculation time must be known or the time between data 

calculation start and the encoder reading be minimized.  

While the polled method could allow encoder reading to be 

taken at the exact time the data calculation cycle starts 

there is no way to guarantee or control this.  The 

continuous method does not make it possible to record 

encoder position at exactly the data calculation start time 

of the MicroStrain sensor but the time between the first 

data bit output of the sensor and the calculation start time 

is known and can be compensated for.  This enables the 

possibility to match encoder position with MicroStrain 

position based on a time shift of the encoder data.[10] 

A third mode of communication is also possible.  It is 

polling while in continuous mode.  While the MicroStrain 

sensor is in continuous mode it is possible to also poll the 

sensor for a different set of data.  This may increase the 

calculation time required depending on the data that was 

requested.  The first set of data that is sent back from the 

sensor to the host is the continuous mode data.  The polling 

mode data requested then follows.  The host must be able to 

distinguish between the two data packets. 

4. Acquiring Data – Gyro Stabilized Euler Angles 

Acquiring data is performed in two steps.  The first 

step is the host must issue a command.  The sensor will then 

return the corresponding data.  The host may have to issue 

more than one command to achieve desired results.  Once the 

sensor is powered up it will automatically start all raw 

data calculations and continue these calculations until 

power is lost.  The default mode is polling mode.  In this 

case only the command byte must be sent to the sensor.  This 
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tells the sensor which set of data is requested.  The entire 

list of possible commands is seen in Table 3.  When the 

sensor finishes the calculation it is performing, assuming 

it receives a command, it will return the data in a form 

specific to the requested data.  This is explained later in 

this section.  The MicroStrain sensor is capable of storing 

up to 15 commands in its buffer.  They will be output in 

order.[10] 
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Table 3.   Command Set Summary for MicroStrain 3DM-GX1 

[From Ref. 10]. 
 

To enter continuous mode the host must issue the “Set 

Continuous Mode” command, 0x10, followed by the desired data 

command, from Table 3.  The sensor will respond by sending 

the desired data back to the user at a constant rate, 

depending on the setup of the sensor.  This will continue 
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until the sensor is reset or the stop command is issued.  

The stop command is similar to the command to enter 

continuous mode.  The host must first issue the “Set 

Continuous Mode” command followed by the “Null Command”, 

0x00.  This will cause the sensor to stop sending data out 

continuously.  Continuous mode can be re-entered at any time 

if desired. 

The command that is used in this project is 0x0E “Send 

Gyro-Stabilized Euler Angles.”  This command gives the roll, 

pitch, and yaw of the sensor with respect to the fixed earth 

orientation system.  The angles are according to the ZYX or 

aircraft coordinate system[10].  The format of the returned 

data is seen in Table 4.   

 
Table 4.   Gyro-Stabilized Euler Angles Date Output 

Format [From Ref. 10] 
 

The RS-232 receiver must be able to receive and process 

this data fast enough so that no data is lost.  The sensor 
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will continue to send data regardless of whether or not the 

receiver is receiving the data.  The data in roll, pitch, 

and yaw is sent in a raw binary format.  The roll and yaw 

have possible values ranging between -32768 to 32767, 

corresponding to -180° to 180°.  The pitch has a range of   

-16384 to 16343, corresponding to -90° to 90°.  These raw 

16-bit numbers must be reformatted by a scaling them by 

360/65536 to obtain the correct angle in degrees.[10] 

The last four bytes of data sent is very important for 

error checking.  This helps to ensure all data arrived and 

is valid.  The “TimerTicks” is the word of data that holds 

the value of sensor clock ticks recorded at the beginning of 

every calculation cycle.  “TimerTicks” is a 16-bit number so 

when it reaches 65535 it will rollover to 0 on the next 

clock tick.  “Checksum” is the reference number for correct 

data.  The host must add all preceding bytes of data 

received together.  If this number is equal to the 

“Checksum” then the data received is correct.  If the 

numbers are different, the data is invalid for a list of 

possible reasons: interference, incorrect data set, etc.  In 

the case of command 0x0E, “Send Gyro-Stabilized Euler 

Angles”, the “Checksum” would be compared to 

0x0E+roll+pitch+yaw+TimerTicks.[10] 

5. Calculation Cycle Information 

The amount of time between clock ticks is programmable.  

The default value is 6.5536msec.[11]  This the value used 

for this project.  The clock will always cycle at this 

speed.  Not all the calculations will be completed in one 

cycle of the clock.  It may take as many as 10 clock cycles 

to compute the output depending on the desired output and 
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the clock speed, as seen in Table 5.  For this project, at 

6.5536 msec per tick, it requires 2 complete timer ticks for 

the 0x0E command calculation to complete.  As seen, it is 

standard for all the command calculation timer ticks at 

6.5536 msec to be two ticks.  The time could be changed to 

10 msec, which would clearly speed up the sample rate, but 

if all the sensors are defaulted to 6.5536, it makes more 

sense to test at default rather than reset the internal 

circuitry of every sensor this apparatus will test.[11] 

 
Table 5.   3DM-GX1 Clock Cycles per Calculation Type 

[From Ref. 11] 
 

In the above table, the “T” means that particular 

command under that associated time does not have a 

guaranteed number of ticks.  This is because the timing is 

so close to the edge of a timer tick that it can be assumed 

it transitions for some time on either side of a timer tick.  

Some cycles may take only 1 tick while at other times it may 

take 2 ticks.  The red and blue cells are highlighted for 

purposes of the documentation it was drawn from and they 

have no purpose here. 
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Table 6.   3DM-GX1 Total Calculation Time per Type [From 

Ref. 11] 
 

The above table shows the total time for each 

calculation cycle in milliseconds.  To arrive at these 

numbers the clock cycle time is multiplied by the timer 

ticks required from Table 5.  The “T”, red, and blue cells 

are the same as in Table 5.  The green cells are the fastest 

calculation cycle time for each command.  Again, this was 

not used because all the default values were used to 

standardize the calculations from command to command and 

sensor to sensor.  The above table shows the calculation 

cycle time for the 0x0E command is 13.107 msec.  This means 

every 13.107msec a new data point can be read.  The sensor 

outputs data at 76.295 Hz.[11] 

D. ENCODERS 

There were two encoders used in this project.  One was 

a 10-bit absolute encoder created by Computer Optical 

Products, Inc.  The other encoder was a 16-bit absolute 

created by Gurley Precision Instruments. 



 40

1. 10-Bit Encoder 

The first encoder that was used in the project was the 

10-bit absolute encoder, CP-350-10GC, manufactured by 

Computer Optical Products, Inc.  The output is standard +5V 

TTL.  50kHz is the maximum data output rate.  All data is 

output in a 10-bit parallel, grey code form.  This requires 

a conversion from the grey code to binary code.  Once the 

output is in binary code it can then be converted to an 

angular degree.[12] 

There are a number of different methods that can be 

used to convert grey code to binary.  The following general 

formula for the conversion is from Ref. 13:  

Bn = Gn·Bn + 1 + Gn · Bn+1   

In this project, a short code routine was used for the 

conversion.  The pseudo code can be seen in Figure 7.   

            
Figure 7.   Grey Code to Binary Pseudo Code [From Ref. 

13]. 
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This code is clearly for a 12 bit application.  For the 

purposes of this project the second line “B11=G11” would be 

changed to “B9=G9.”  All the lines after the second line 

would follow the pattern.  The resulting binary number will 

be able to be converted to degrees by: 

DEGREES=BINARYNUMBER*360/1024. 

2. 16-Bit Absolute Encoder 

The 16-bit absolute encoder was created by Gurley 

Precision Instruments located in Troy, NY.[14]  A photo can 

be found in Figure 8.   

 

 
Figure 8.   A58 16-Bit Encoder and Attachment. 
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It is a model A58 encoder.  The part number is very 

important because it describes the encoder’s 

characteristics.  It is A58S16MBTT05SAT39Q04EN.  The 

following is the breakdown of the part number and 

characteristics[14]: 

A58- Model number.  It is specific to the Gurley 

Company. 

S- Shaft type.  S indicates a solid shaft. 

16- Resolution.  It has 16-bit resolution.  The 

absolute resolution is 5.493x10-3 degrees per 

count.  

M- Output Format.  This encoder uses a multiplexed 

parallel output.  8-bits at a time are output, 

starting with the least significant 8-bits first.  

There are more specific output details later in 

this section.  Serial output could have been 

selected but the DIO can read parallel much faster 

and more easily than serial.  It only takes 2 read 

cycles to acquire all information with parallel 

communications while it would take 16 read cycles 

to get all the information with serial 

communication. 

B- Output Code.  The output code of this encoder is 

binary.  It can also be grey code like the 10-bit 

encoder.  This is not practical for this project 

because the DIO ports are read and treated as a 

binary number.  If grey code were used, a more 

time intensive program would have to be written to 

take the grey code and convert it into the 
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corresponding binary number.  This is an extra 

step that is eliminated if the encoder outputs the 

binary number to start.  

TT- Output Device. Since this system is using digital 

input as the interface with the encoder it makes 

most sense to use a TTL signal coming from 

encoder.  The other signal options would require 

extra circuitry to be compatible with the DIO 

input device. 

05- Voltage.  The digital to analog convert on the 

PC104 is able to output 05.0 volts which can be 

used to drive the encoder. 

S- Temperature Range.  This system is not intended 

for implementation in hazardous situations so a 

standard temperature range of 0-70 C is 

sufficient. 

A- Base type. A is the only option available for this 

model.  It is a combination synchro flange/face 

mount base. 

T- Cable Exit.  The particular setup of this system 

would most easily interface with the encoder if 

the cable exited out the top of the unit (back) of 

the encoder rather than the side. 

39- Cable Length in inches.  A different size could 

have been selected, but 39” is the standard option 

so that is what was selected. 
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Q- Connector. Q corresponds to a DA-15P type plug.  

This is a 15-pin male connector.  The pin 

assignment and plug diagram can be found later in 

this section. 

04E- Shaft Diameter.  04E corresponds to a shaft 

diameter of 1/4".  This size was selected because 

the 10-bit encoder set up could already accept a 

1/4" diameter shaft. 

N- Special Features.  There were no special features 

ordered. 

 

The overall specifications of the encoder can be found 

in Table 7.  The far right column is the encoder used in 

this project. 
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Table 7.   A58 16-bit Encoder Specifications [From Ref. 

14]. 
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The pin assignment of the encoder can be seen in Table 

8.  

   
Table 8.   Pin Assignment of Encoder Exit Cable [From 

Ref. 14]. 

 

Signals D0-D7 are data lines for the position data of 

the encoder.  They carry the byte of data available based on 

the requested set.  These lines are all output only.  DA is 

the signal for Data Available and is active low.  This 

signal is output only and it tells the user when the data on 

the data lines is valid.  OE1 and OE2 are both input lines 

and are both active low.  These lines indicate to the 

encoder when the user would like which set of data.  Only 

one of these two lines should be low at a time.  OE1 low 

indicates to the encoder the user would like the least 

significant byte of data.  This is bits 0-7 of the encoder 

position.  When OE2 is low the encoder outputs the most 

significant byte of data.  This is bits 8-15.  When both of 
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these outputs are put together the 16 bit position of the 

encoder is realized.  The 0V signal is the reference or 

ground signal for the encoder.  This should be connected to 

the ground of the system.  +V is the high voltage input.  

For the particular model used in this project the high 

voltage is +5V.  CASE connects to the casement of the 

encoder and is not used in this project.[14] 

The connector plug can be seen in Figure 9.   

 

 
Figure 9.   Male plug of the encoder. 

 

The timing diagram of the encoder unit is very crucial 

in understanding how the encoder unit works as a whole.  The 

timing diagram can be seen in Figure 10.  The diagram shows 

lines OE1, OE2, DA, and D0-D7 with T1=80±10µs, T2≥300ns, 

T3≥300ns, and T4≤200ns.[14] 

87654321 

1514131211109
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Figure 10.   Timing Diagram of A58 Encoder [From Ref. 14]. 
 
 
 
 

These are the steps that must be followed to acquire 

data from the encoder: 

1. OE1, OE2, DA are all high.  D0-D7 are usually low, 

but this is not guaranteed.  They are in an unknown 

state, Z in the timing diagram.  When in this 

unknown state the data available on the lines is not 

valid. 

2. User must take OE1 line low.  The falling edge of 

OE1 latches the current position into the on board 
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memory.  Every time this line is taken low, the 

encoder always clears the position memory and stores 

the current position. 

3. After T1, DA appears low.  The first instance that 

data is available is when DA is low.  T1 is not too 

much of a concern in the project beyond being a 

reasonable time.  The biggest concern is getting 

both sensors to latch at exactly the same time.  The 

data read can occur any amount of time after the 

latch.  A reasonable amount of time for T1 would be 

any time less than 100µs.  This project does not 

require a degree of accuracy in dynamic motion 

faster than 10kHz because the MicroStrain sensor is 

not able to output faster than 350Hz.[11] 

4. Once DA appears, the least significant byte may be 

read.  D0 corresponds to bit 0 and D7 to bit 7 of 

the position. 

5. After the read is complete the user must pull OE1 

back to high to signal to the encoder the least 

significant byte read is complete.  After T4 the 

data on the line will not be in any particular 

state.  It is bad data and should not be read.  T4 

is not a crucial time but is included to indicate 

transition time for the data lines, even if the 

transition is to useless data. 

6. After T2 the user must pull OE2 low.  This indicates 

to the encoder to place the most significant byte of 

the already latched data on the data lines.   
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7. DA will then transition to low after T4.  This 

indicates to the user that the upper byte of the 

position word is available. 

8. The user is then able to repeat the process to latch 

and read another value.  If OE2 is transitioned low 

before OE1 is transitioned low, the data available 

will still be the old data.  OE2 may be pulled low 

and the upper byte data read any number of times 

without affecting the data.  Although, as soon as 

OE1 is pulled low, the data is reset and a new set 

of data will be available. 

 

If for any reason the V+ input does not have the 

correct voltage and current supplied, the output will not be 

correct.  The encoder may appear to be functioning correctly 

at first, but upon further investigation, it will be found 

that the data output is faulty.  The v+ of the encoder 

requires 5V at 250mA[14] and the data acquisition circuit is 

only able to supply 5V at 5mA of current from the DAC.  This 

means the encoder must be driven by an outside source, or 

the constant +5v of the data acquisition circuit must be 

used.  In this project the constant +5v from the data 

acquisition circuit was used. 

E. THE PENDULUM 

The pendulum is the main source of motion and 

connection between the sensors.  The pendulum length is 

supplied by a half-inch wooden dowel rod which is 43 inches 

long.  While the dowel rod does contribute more error due to 

torsion than metal would produce, the more important factor 
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is the effect a metal rod would have on the internal 

magnetometers of the MicroStrain sensor.  The MicroStrain 

sensor is connected to the wooden shaft by a plastic 

bracket.  The combination of the mounting holes and the fact 

that the pendulum can rotate its orientation within the Z 

axis of the shaft allows the sensor to be placed in every 

vertical and upright horizontal orientation possible.  The 

entire assembly can also be repositioned on its side to 

capture horizontal motion of the pendulum ensemble.  The 

pendulum connects to the encoders by a clamp on the shaft.  

This ensures a strong secure connection but at the same time 

it allows the pendulum length to be readjusted.  Readjusting 

the pendulum length will also allow the period to be 

altered.  Since the MicroStrain sensor is intended to be 

used to capture human motion, having the adjustable period 

allows the pendulum to simulate different limb’s sections 

performing different motions.  Photos of the pendulum can be 

found in Figure 11.   
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Figure 11.   The Pendulum. 
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IV. TEST 

A. SETUP 

This section describes the setup of the system, 

concentrating on connections and inter-module 

communications.  A block diagram of the test system can be 

found in Figure 12.   The actual setup can be seen in Figure 

13.   

 

 
Figure 12.   Block Diagram of Setup of test system. 
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Figure 13.   Actual Experiment Setup. 

 

1. Ethernet and Associated Setup Procedures 

The main form of communication between the host and the 

target of this system is an Ethernet connection.  At 

different points throughout the project the two computers 

were either directly connected or connected through a 

wireless connection.  The wireless connection used was the 

IEEE 802.11g.  The host was connected directly into a 

wireless router and the target PC104 was connected to a 

wireless receiver.  This connection was set up and used 

strictly for demonstration purposes.  The connection was 

fast enough that program execution was not impeded.  The 

only purpose of the connection between the host and target 

Boot Completion Indicator 

Target PC104  

Data Acquisition Circuit I/O  

16-Bit Encoder  

Pendulum
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Host Machine  
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is for debugging, console out, and sending the compiled 

program to the target for execution.  None of the programs 

that were tested used the console out in any important 

application.  It was only used as a debug tool so the speed 

would have little impact on program execution. 

For testing and data recording the hard connection 

between the host and the target was used.  This consisted of 

a CAT-V crossover cable connection between the Ethernet 

ports of both systems.  The connection speed used was 

100Mbps.  At this connection speed and under the demands of 

the program, there was little to no disadvantage of running 

under a host/target system rather than running strictly 

under a target only system. 

For the Ethernet connection to be effective and for the 

communications to function properly, there were a few setup 

procedures that needed to be completed.  The main 

communications between the two systems occurred because the 

QNX Momentics IDE needed to talk with the program executing 

on the target PC104.  For this communication to be possible, 

the PC104 needs a small process to be continuously running 

that establishes this communication link.  The program 

called qconn, developed by QNX, is the small process that 

allows this communication.  qconn must be running on the 

target machine for Momentics to be able to send and execute 

compiled programs on the target machine.  This process can 

be started at anytime after the OS is fully booted. 

A second process must also be running in the background 

for proper communication between the host and the target.  

The process which allows communication between any two QNX 

based systems is called phrelay.  This process allows remote 
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login to occur from the QNX developed program Phindows.  

Phindows is a Windows based remote login program.  It allows 

a user to start a totally new session of QNX Photon, the QNX 

OS graphical user interface.  The session is hosted on the 

QNX system but is accessed and controlled by the remote 

Windows system.  This program is an excellent tool that 

allows the PC104 to function as a very powerful remote 

embedded system.  With this program the user is able to 

eliminate the need of a monitor or any direct physical 

contact with the PC104, yet at the same time have the 

capability to control every aspect of the machine.  Remote 

file transfer protocol (FTP) communications are also 

necessary. 

FTP allows the fast transfer of files between two 

computer systems.  This is necessary for this project 

because the PC104 is not powerful enough to do much visual 

analysis of the recorded data, especially remotely.  The 

MATLAB program is also not able to execute on the QNX OS.  

MATLAB is a very powerful data analysis tool that is used in 

this project.  MATLAB will execute on a Windows system, thus 

creating the need for a file transfer.  The output file that 

is stored on the PC104 that contains all the test data can 

be transferred to a Windows based system by an ftp file 

transfer.   

The common UNIX program inetd gives the OS a way to 

manage most internet type services and processes.  For the 

QNX OS to support FTP capabilities, inetd must be a 

currently running process.  This allows a user to log into 

the FTP client of the QNX system from a Windows system.  The 

command line FTP client on Windows systems is directly 
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compatible with the QNX FTP client and is accessible when 

inetd is running.  A second advantage of running this 

program is that phrelay is automatically started when the 

inetd process is started.  When the inetd line is included 

in the /etc/rc.d/rc.sysinint system initialization file, the 

two processes will automatically start on operating system 

startup, allowing instant and automatic FTP and remote 

access client access from a remote system.  The inetd line 

is included in this file directly following the system boot 

indicator program discussed previously. 

2. RS-232 

Serial Communication is the main form of communication 

between the MicroStrain sensor and the target PC104.  

Communication is performed following the RS-232 standard.  

The baud rate is 38.4Kbaud with 8 bits, 1 stop bit, and no 

parity.  All communication with the sensor is directed 

through COM1 of the PC104, I/O address 0x3F8-0x3FF.  The 

PC104 has a standard 16550 type UART on the micro CPU chip.  

The UART has a 16-byte first in first out buffer.  The UART 

is set to IRQ 4.  This means all interrupts associated with 

the UART will appear on interrupt request line 4.  The 

specific setup of the COM1 port is discussed in the 

Acquisition Program section. 

3. Digital Input/Output 

Both encoders communicate with the PC104 through the 

digital input/output (DIO) ports of the data acquisition 

circuit.  All the data is recorded as input to the DIO.  The 

16-bit encoder actually uses some digital outputs to drive 

the output enable lines.  The signals are all TTL.  5V 
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corresponds to logic 1 and 0V is logic 0.  When the DIO 

ports are read, each port gives an 8-bit number representing 

the status of the port. 

The 10-bit encoder has no control input so no digital 

output from the PC104 is necessary.  The encoder is driven 

by the analog to digital conversion output “Vout0” on the 

data acquisition circuit, pin 29.  The program outputs a 

constant 5V on this pin.  This voltage drives the LED inside 

the encoder.  The rest of the pin to pin connections can be 

seen in table 9.   

                      
Table 9.   10-Bit Encoder Pin-Pin Connection Table. 

 

DIO ports A and B must be set as input.  Port A when 

read will give the complete least significant grey code byte 

of data.  Only the first two bits of port B must be read.  

If all the bits are read then only the first two must be 

used.  These are the two most significant bits of the grey 

code position of the encoder.  The two ground pins must be 

connected together to establish a common ground.  If this is 

Pin 

DIO A0     1 
DIO A1     2 
DIO A2     3 
DIO A3     4 
DIO A4     5 
DIO A5     6 
DIO A6     7 
DIO A7     8 
DIO B0     9 
DIO B1    10 
 
Vout0     29 
Aground   33 

8      G0 
1      G1 
12     G2 
10     G3 
11     G4 
6      G5 
3      G6 
4      G7 
2      G8 
9      G9 
 
7      5V 
5    ground 

Pin Grey Code Bit 

Encoder Data Acquisition 
Circuit 
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not connected then the DIO may not read the bits correctly 

and the LED in the encoder will not light. 

The 16-bit encoder is connected in a slightly different 

configuration.  The output enable control lines of this 

encoder require a 5V TTL signal.  Originally, lines OE1 and 

OE2 were connected to an analog output of the data 

acquisition circuit.  The effect of this is discussed in the 

Results section.  The pin connection can be seen in table 

10.   

             
Table 10.   16-Bit Encoder Pin-Pin Connection Table. 

 

Port A and B must be set for input.  The entire byte of 

data is input through port A.  Port B must also be set for 

input so “data acknowledge” can be read from the encoder.  

It is important for the computer to be able to read the DA 

signal.  Port C must be set for output.  Outputting OE1 and 

OE2 on a TTL line is crucial to get correct and accurate 

data.  The encoder could be driven by a DAC of the data 

acquisition circuit at a quick glance, but in reality it is 

Pin 

DIO A0     1 
DIO A1     2 
DIO A2     3 
DIO A3     4 
DIO A4     5 
DIO A5     6 
DIO A6     7 
DIO A7     8 
DIO B0     9 
DIO C0    17 
DIO C1    18 
+5V Out   29 
Aground   33 

1      D0 
2      D1 
3      D2 
4      D3 
5      D4 
6      D5 
7      D6 
8      D7 
9      DA 
10     OE1 
11     OE2 
14     5V 
13   ground 

Pin Description Description 

Encoder Data Acquisition 
Circuit 
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not possible.  The DAC does not supply enough current to run 

the encoder without a buffer to supply the extra current.  

When the encoder power is connected to the +5V of the data 

acquisition circuit enough power is supplied to drive the 

encoder. 

B. ACQUISITION PROGRAM FOR THE 16-BIT ENCODER 

The acquisition program described here will be the 

program associated with the 16-bit encoder.  The 10-bit 

encoder code is similar but the results and methods were not 

as accurate as with the following method used with the 16-

bit encoder.  The 10-bit encoder program will be described 

in a later section.  It only describes the differences 

between the 10-bit encoder program and the following one. 

The flow of the program is one of the most crucial 

aspects of the project.  Incorrect programming could lead to 

inaccurate or incorrect data.  The program is split into two 

main sections, the main routine and the interrupt service 

routine.  The data acquisition board initialization, serial 

port setup and initialization, file output, and all other 

initializations will be described under the main function 

section while the DIO and serial port reading will be 

explained under the interrupt service routine section.  

Sections of code will be described in the following 

sections, although the entire program can be found in 

Appendix A. 

The file control.wse is included in the beginning of 

the program.  The file is a header file with function 

definitions that were used in the program.  The file also 

contains all the header file inclusions that were used in 
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the project.  This slimmed down the program by writing all 

the include statements in a separate file.  The control.wse 

file was added to for this project.  The base variable is 

the base address of the data acquisition board and in this 

application it is 0x280.  All registers of the data 

acquisition board are an offset of this address. 

1. Main Function 

 The main function is where the program first starts 

execution.  The first section of the main routine consists 

of mostly initialization routines.  There are many 

initializations that must be completed for proper operation 

of the system.  The first part of the code is seen here: 

   51     BoardInit(); 

 All code here and in the following section, unless 

otherwise noted, is taken from Appendix A.  This is the 

first few lines of the main function.  BoardInit() is a 

function that is found in control.wse.  The code for this 

function is seen here: 

   46 int BoardInit(void) 
   47 { 
   48     int privity_err; 
   49     privity_err=ThreadCtl( _NTO_TCTL_IO, NULL ); // thread gets 

root permission at access hardware 
   50     if(privity_err==-1) 
   51     { 
   52         cout<<"can't get root permission"; 
   53         return -1; 
   54     } 
   55     out8(base + 0, 0x40); //reset the board, except the DAC output 
   56     return 1; 
   57 } 

This code is taken from Appendix B.  Line 49 is the 

most important line here.  The ThreadCtl function is a QNX 

Neutrino specific command.  It gives root permission for the 

thread to access all I/O functionality.  With this line of 
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code, the program will not be allowed to access any I/O 

functionality.  Lines 50-54 simply return to the console an 

error message if root permission is not attainable.  Line 55 

is a data acquisition circuit specific register write.  This 

line writes a 0x40 to the base address which causes the 

entire board to be reset.  All DIO becomes input, all 

counters/timers are stopped, and all registers will be set 

to 0.  The digital to analog circuitry is the only part of 

the board that is not affected.  Once the board is reset the 

function will return a 1 if successful. 

The next set of lines in the main function are seen 

here:  

 53     out8(base + 11, 0xFE); //set all DIOA DIOB to input DIOClow 
Output 

 54     SetOEBits(1,1);//OE1 OE2 high 

Line 53 sets DIO port A and B to input, sets bits 1 and 

4, and the lower nibble of port C to output, set bit 0.  

Bits 2,3,5,6,7 do not matter so they are set to 1, giving a 

value of 0xFE to be written to the register.  When the DIO 

line control is changed from input to output for any of the 

ports, the respective ports are all pulled low.  If the 

encoder is attached to the circuit and is currently on, the 

encoder will actually take a reading during this time.  

However, the flow of operations in this program do not allow 

this reading to affect any of the other readings.  There 

must be careful attention given to this or the encoder may 

not produce the correct reading that is requested.  The code 

for this function is seen here: 

  152 void SetOEBits(int OE1, int OE2) 
  153 { 
  154     out8(base+10,(OE1 + 2*OE2)); //Pulls OE bits in either 

direction, 1-high, 2-low, OE1 must be on pin 17, OE2 pin 18 
  155 } 
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This function will receive two integers that must be 

either a 1 or a 0 for this function to work correctly.  A 1 

represents high and a 0 low.  When the function is used, the 

values sent correspond to what the program requests the 

status of bits 0 and 1 of the DIO port C output be set to.  

Bit 0 is the first parameter and bit 1 is the second 

parameter.  In the function, the only code executed is an 

output to register base + 10.  This register is the DIO port 

C status register.  Writing either a 0,1,2, or 3, as in this 

case, will change the bits 1 and 0 to represent the binary 

value of the number sent.  This means that the other bits 

are all set to 0.  In the case of this program there is no 

problem because none of the bits excluding 0 and 1 are used.  

If these bits are to be used in a different application, 

this code will have to be modified to first read the status 

of port C, change only bits 0 and 1, and then send the value 

back.  In this program this code was not included because 

this function is executed in the interrupt service routine, 

ISR, as well as the main function.  The idea is to minimize 

code execution in the ISR, therefore the extra code was 

decidedly excluded. 

The next set of code is seen here: 

 56     SerialBit=0; 
 57     DataIndex=0; 
 58     DataSetSize=1000; 
 59  
 60     SerComInit(); 

Lines 56-58 initialize various variables for the 

program.  This particular set of variables is actually 

global variables because they are used in both the ISR and 

the main function.  They are initialized here to ensure 

proper operation.  SerialBit is the variable that is used to 

indicate where in the receiving serial data packet the ISR 
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is.  This helps to ensure that only an 11 bit package is 

taken off the UART buffer at a time.  More will be discussed 

on this in the ISR section.  DataIndex is the current data 

set that is being recorded.  This is used in the index that 

will indicate how many and where the data is currently being 

stored in the encoder data and MicroStrain sensor data 

arrays.  DataSetSize is the desired number of data points to 

record.  For this project, 1000 data points are enough data 

to allow a thorough analysis.  Line 60 is the function that 

sets up and initializes the UART and RS-232 operation.  Seen 

here is the actual function code: 

   92 void SerComInit(void) 
   93 { 
   94     out8(sbase + 4, 0x09); //MCR data terminal ready 
   95     out8(sbase + 3, 0x83); //enable latch for baud rate set 
   96     out8(sbase + 0, 0x03); //lower baud divisor 
   97     out8(sbase + 1, 0x00); //upper baud divisor 
   98     out8(sbase + 3, 0x03); //disable latch, 1,N,8 
   99     out8(sbase + 2, 0x07); //set FIOF to 1 character 
  100     out8(sbase + 1, 0x15); //enable recv interrupt 
  101 } 

A #define statement that establishes sbase is 

established at the beginning of the program code file.  This 

is the base address of the UART.  The address for the target 

PC104 is 0x3F8.  All registers used for setup and 

initialization are offsets of this base address.  There are 

many steps that are required to ensure proper operation of 

the UART and proper interface with the MicroStrain sensor.  

The modem control register is sbase + 4.    This register 

control is used for handshake procedures.  In the case of 

this program, there is no handshake needed because the 

sensor does not require any, so the port is set as follows: 

Bit 0: 1 – Data terminal is ready for data 

Bit 1: 0 – No request to send data 
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Bit 2: 0 – Option 1, not needed 

Bit 3: 1 – Option 2, needed to enable proper interrupt 

operation on some PC based systems. 

Bit 4: 0 – No loopback, normal operation 

Bit 5: 0 – Not used 

Bit 6: 0 – Not used 

Bit 7: 0 – Not used[15] 

 

The next register that requires setup is sbase + 3.  

This register is the line control register and is set up as 

follows: 

Bit 0: 1 – Word length for traffic is set to either 6 

or 8.  Bit 1 specifies which. 

Bit 1: 1 – Word length of 7 or 8.  In conjunction with 

bit 0 the word length will be 8.  This is 

needed because the MicroStrain sensor 

outputs 8 bit words. 

Bit 2: 0 – Number of stop bits.  The MicroStrain sensor 

outputs 1 stop bit.  This bit must be set 

to receive and send 1 stop bit.  Since the 

word length is set to 8 bits, a 0 in this 

bit will indicate 1 stop bit. 

Bit 3: 0 – The MicroStrain sensor does not include any 

parity in its formatting.  Setting this bit 

to 0 indicates no parity. 
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Bit 4: 0 – Not needed because parity is set to 0.  This 

bit would otherwise indicate even or odd 

parity. 

Bit 5: 0 – Not needed because parity is 0. 

Bit 6: 0 – A 0 does not require a break condition.  A 

break is not need for this application. 

Bit 7: 1 – This gives access to the baud rate counter 

latch.  If the baud rate is to be set, this 

bit must be set to 1.  The baud rate is 

actually stored in a register that is 

mapped to two different locations.  The 

transmit/receive buffer and the baud rate 

divisor least significant byte are both 

mapped to register offset 0 while interrupt 

enable and the divisor most significant 

byte are both mapped to register offset 1.  

When this bit is set, the divisor registers 

are the registers that are accessible while 

the others are not, until this bit is set 

back to 0.  It is crucial for proper 

operation that this bit is set back to 0 

before the UART is enabled for 

operation.[15] 

 

Since the UART is now mapped to set the baud rate it 

would make most sense to set the baud rate.  Lines 96 and 97 

set the baud rate.  The UART has a clock that is set to run 

at 1.8432MHz.  To get the desired clock rate a divisor must 

be used to divide the clock rate to the desired baud rate.  
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In this case a baud rate of 38.4kbaud is needed.  Under the 

16550 standard of UART the 1.8432MHz clock is naturally 

divided by 16 before the divisor is applied.  This means the 

clock is 115.2Kbaud if the divisor is 1.  A divisor of 3 

will result in a baud rate of 38.4Kbaud.  This value is 

entered into the least significant byte of the baud rate 

divisor, sbase + 0, line 96 of the code.  The most 

significant byte of divisor is 0, which is set in line 97.  

Immediately following this instruction, the line control 

register, sbase + 3, is again set in line 98.  This resets 

only bit 7 of the register.  It is very important to ensure 

all other bits are unaltered as this would change the parity 

and the word format.  Line 98 writes 0x03 to the register.  

The only difference between this instruction and the 

instruction previously written in line 95 is bit 7 is 

changed to a zero.  This will allow the UART to remap the 0 

and 1 register offsets back to the transmit/receive buffer 

and the interrupt enable register. 

Lines 99 and 100 set up the first in first out buffer 

control register and the interrupt enable register.  Since 

the MicroStrain sensor sends data back at the end of its 

calculation cycle in a packet of data that has a size that 

varies with the type of data, the interrupt will need to be 

set when it receives as little as 1 character.  If the 

interrupt is called for every character, it does not matter 

the size of the data packet being sent by the sensor because 

the ISR will be able to take all the characters sent one at 

a time.  The ISR will have to be told how large of a data 

packet to expect to ensure each character is placed within 

the correct data packet. 
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It is very important to synchronize the encoder 

measurement and the MicroStrain sensor measurement as 

accurately as possible.  One way for the sensor to 

communicate with the encoder is through the interrupt 

service routine.  If the encoder is read on the last data 

character sent by the sensor, it will be possible to 

synchronize the two measurements as accurately as possible.  

The data packet sent by the sensor in this project is 11 

characters long.  The first in first out character buffer of 

the UART can cause an interrupt on 1,4,8, or 14.  The only 

value that works for the application in this project is the 

1 character setting.  This setting, in conjunction with the 

ISR knowing which character of the data packet it is 

currently receiving, allows the ISR to know exactly when to 

take an encoder reading, thus minimizing the time difference 

between the encoder reading and the MicroStrain sensor 

reading. 

The first in first out (FIFO) buffer control register 

is initialized in line 99 of the code.  The register offset 

is 1.  The bits are set as follows: 

Bit 0: 1 – Enable transmit/receive FIFO. 

Bit 1: 1 – Clear the contents of the receive FIFO.  

After this is called the value of this bit 

will be automatically reset to 0. 

Bit 2: 1 – Clear the contents of the receive FIFO.  

After this is called the value of this bit 

will be automatically reset to 0. 

Bit 3: 0 – No change in the transmit/receive mode.  The 

difference in mode only deals with how the 



 69

RXRDY and the TXRDY pins function.  These 

pins are not used in this project so this 

bit will remain unchanged. 

Bit 4: 0 – Not used. 

Bit 5: 0 – Not used. 

Bit 6: 0 – Trigger level for the receive FIFO 

interrupt.  A 0 here and in bit 7 will 

indicate the level 1. 

Bit 7: 0 – In conjunction with bit 6 being a 0, the 

FIFO will cause an interrupt every time 

there is 1 character in the buffer.[15] 

 

In order for the interrupts to actually occur the 

interrupt enable register must be set.  Line 100 contains 

the instruction that will perform this task.  The register 

offset of 1 is set with the following byte: 

Bit 0: 1 – Enable the receiver ready interrupt.  This 

interrupt will occur if the FIFO has a 

character that is ready to be received. 

Bit 1: 0 – Disable the transmitter empty interrupt.  

Transmit interrupts are not useful in this 

application 

Bit 2: 1 – Receiver line status register change 

interrupt.  This interrupt will occur for 

various reasons.  Data available, parity 

error, framing error, and various other 

errors will cause this interrupt.  If this 

interrupt occurs the line status register, 
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offset 5, will have to be polled to 

determine the cause of the interrupt.  This 

interrupt is never actually used in the 

code for the project, but this interrupt 

could be used.  The ISR will discard any 

information that is not correct based on 

what data is expected. 

Bit 3: 0 – Modem status register interrupt.  This 

interrupt is not needed since the only 

program that will be altering the UART is 

this program. 

Bit 4: 1 – Sleep mode for a 16750 UART only.  This does 

nothing in this project. 

Bit 5: 0 – Not used. 

Bit 6: 0 – Not used. 

Bit 7: 0 – Not used.[15] 

 

 Writing the previous byte to sbase + 1 initializes and 

starts the indicated interrupts.  Any information received 

by the UART will now cause an interrupt.  The next step of 

the program is to ensure the MicroStrain sensor is not 

outputting any data and it is not in continuous mode before 

the interrupt service routine is enabled.  If it were in 

continuous mode, the interrupts would start as soon as the 

interrupt service routine is attached to the interrupt of 

the UART.  To maintain full control over the interrupts the 

sensor must not be sending data back until the program is 

ready to receive the data.  Line 61 of the code, under the 

main function, is the function that will do this: 
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 61     StopCONTmode(); 

The definition of this function is after the main 

function and seen here: 

  123 void StopCONTmode(void) 
  124 { 
  125     out8(sbase + 0, 0x10); //Command Command 
  126     out8(sbase + 0, 0x00); //Null Command 
  127     out8(sbase + 0, 0x00); //Null Command 
  128 } 

To output characters on the serial line, COM1 serial 

port, the characters must be written to the transmit FIFO 

buffer.  This is accomplished by writing to the base 

register of the UART, address sbase.  When the character is 

read it is then sent out by the UART.  Line 125 sends the 

“Set Continuous Mode” command over the RS-232 line.  This is 

then followed by two null commands in line 126 and 127.  

This sequence of characters, when received by the sensor, 

indicates that the sensor is to stop continuous mode and 

listen for a further command, either a polling command or 

another command to reenter continuous mode.  Polling and 

continuous modes are explained in more detail in the 

MicroStrain sensor section of this paper. 

Continuing in the main function, the next command is 

the interrupt initialization function: 

 62     ISR4Init(); 

This function initializes and attaches the interrupt 

service routine to the interrupt of the UART.  This 

interrupt is set to occur on IRQ line 4.  This is set in the 

BIOS when the target PC104 first starts to boot.  The 

following code is from the control.wse file: 

  361 /* Initialize IRQ 4 handler*/ 
  362 int ISR4Init(void) 
  363 { 
  364     isr4handid=InterruptAttach(4,isr4_handler, NULL, 0, 

_NTO_INTR_FLAGS_TRK_MSK);  
  365 } 
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ISR4Init() initializes the interrupt service routine 

for IRQ 4.  Line 364 attaches the interrupt handler 

isr4_handler to IRQ 4.  Once the handler is attached the 

returned value is the ID of the ISR handler.  This value is 

only used to mask and unmask the interrupt.  isr4handid is a 

global variable that is declared at the beginning of 

control.wse.  The ISR handler code follows; it also is 

contained in control.wse: 

  354 /*IRQ 4 Handler*/ 
  355 const struct sigevent* isr4_handler(void *arg, int intr) 
  356 { 
  357     isr4_routine(); //ISR routine 
  358     InterruptUnmask(4,isr4handid); //Enable IRQ 4 
  359 } 

The QNX operating system uses signals to communicate 

interrupts.  This is why the type definition of the 

interrupt handler is sigevent.  The first line of the 

handler is the interrupt service routine.  The code for the 

ISR is found in the main code, just above the main function.  

Every time an interrupt occurs on IRQ 4, this ISR handler is 

executed, which in turn executes the ISR.  The last line of 

the interrupt handler, line 358, is the unmask command.  

This command tells the operating system to unmask all 

interrupts on IRQ 4 that are attached to the interrupt 

handler with the id in isr4handid.  This is the final 

instruction that actually stats the action of the interrupts 

to be handled by the defined ISR.  After this command all 

interrupts on IRQ 4 will cause the ISR to execute. 

After all the initializations are complete, the program 

is ready to start collecting data.  This is started in line 

64 of the code:  

 64     SendInstantEulerAngleCONT(); 
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The definition of this function can be found later in 

the code file, and seen here: 

  116 void SendInstantEulerAngleCONT(void) 
  117 { 
  118     out8(sbase + 0, 0x10); //Command command 
  119     out8(sbase + 0, 0x00); //Null command 
  120     out8(sbase + 0, 0x0E); //Send GYRO Euler Angles command 
  121 } 

This is the command that actually starts the data 

collection.  The interrupt service routine is ready to 

execute, the serial communication is set up, and the DIO is 

ready to record.  Line 118 is the “Set Continuous Mode” 

command.  As indicated previously, this alerts the 

MicroStrain sensor to change the output mode based on the 

next two characters received.  If the mode needs to be 

changed, a null command must follow the command.  The sensor 

now knows that it must continuously output the data the next 

command received indicates.  Line 120 is the command for the 

gyro-stabilized Euler angles.  This command indicates to the 

sensor to continuously compute and output the gyro-

stabilized Euler angles of the sensor.  As soon as the 

sensor takes the reading and sends the first character of 

data back over the RS-232 line, the UART receives the 

character and flags an interrupt, indicating the buffer has 

a character to be taken. 

Once the sensor is outputting data and the interrupts 

are occurring, the only task the main routine is responsible 

for is letting the user know the program is still executing.  

This is performed by the following code: 

   66     while(DataIndex<DataSetSize) 
   67     { 
   68         if(checksum==dataid+roll+pitch+yaw+timerticks) 
   69         { 
   70             cout<<"Its good data"<<endl; 
   71         } 
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   72         else cout<<"BAD DATA!!!!"<<checksum<<"  
"<<dataid+roll+pitch+yaw+timerticks<<endl; 

   73     } 

This is simply a while loop that will loop until enough 

data has been collected by the interrupt service routine.  

The DataIndex variable is incremented every time the 

interrupt service routine has received a full set of valid 

data.  For this application, a valid set of data is a set of 

11 characters from the MicroStrain sensor that represent one 

set of Euler angles.  The checksum is a global variable that 

is used to verify the correctness of the data set.  This 

procedure is explained in the MicroStrain section of this 

paper.  The if statement verifies if the most recent data 

collected is valid.  If the data is valid the program will 

output to the console “Its good data.”  This indicates to 

the user that the program is still operating and the data 

being collected is valid.  If the data is not valid, meaning 

all the characters collected do not equal the checksum when 

added together, then the console will output “BAD DATA!!!!”  

A bad data output to the console could mean the data is bad 

for various reasons.  The checksum and the character 

addition are also output to the console if the data is 

invalid.  The user is then able to verify why the data is 

invalid.  When the while loop is exited, the main function 

is responsible for stopping all operation and detaching the 

interrupt. 

   76     StopCONTmode(); 
   77     InterruptDetach(isr4handid); 
   78     FileOutput(); 

As explained previously StopCONTmode() sends commands 

to the MicroStrain sensor that halts all continuous output.  

This will also cease the interrupts from occurring on IRQ 4.  

Line 77 detaches whichever interrupt handler id is sent to 
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it.  In this code it is the handler id assigned to 

isr4handid when the interrupt was initialized.  The final 

major task performed in the main function is FileOutput().  

This function outputs all the data for each sensor in a file 

that is capable of being read by MATLAB.  The function 

definition is seen here: 

  130 void FileOutput(void) 
  131 { 
  132     float myoutf; 
  133     FILE* myfile; 
  134  
  135     myfile=fopen("NewEncoder23.m","w+"); 
  136     fprintf(myfile,"Encoder=["); 
  137     for(int i=0;i<DataSetSize;i++) 
  138     { 
  139         fprintf(myfile," %d\n",EncoderValue[i]); 
  140     } 
  141     fprintf(myfile,"]';"); 
  142  
  143     fprintf(myfile,"\n\nMicroStrain=["); 
  144     for(int i=0;i<DataSetSize;i++) 
  145     { 
  146         myoutf=((float)rollnums[i])*360.0/65536.0; 
  147         fprintf(myfile," %f\n",myoutf); 
  148     } 
  149     fprintf(myfile,"]';"); 
  150 } 

This starts by creating a new file.  Line 135 opens a 

new file with the name in the string parameter.  The file 

must end with an “.m” to be directly compatible with MATLAB.  

The “w+” parameter creates a new file if a file with the 

given name does not exist.  If the file exists, the file is 

opened and its contents are erased.  In either case the file 

is opened for reading and writing.  In this code only a 

write operation is performed.  myfile is an output stream 

leading to the file indicated.  The information from the 

sensors must be output as an array for easy import into 

MATLAB.  This means the array must be declared in the file 

in such a way that MATLAB will understand.  Line 136 is the 

start of the array.  The string is sent to the myfile stream 
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which will write it to the file.  The for loop continues to 

output the encoder data from the encoder data array on the 

computer.  When the data is completely transferred to the 

file, a “]’;” must be output to indicate the end of the 

array for MATLAB.  The function continues by outputting the 

MicroStrain sensor data in the same fashion.  The only major 

difference is the inclusion of line 146.  This instruction 

converts the raw data of the sensor into a usable angle.  

Since there are 360° in a circle and the sensor has 16-bits 

of accuracy, the raw data must first be multiplied by 360 

and then divided by 216 or 65536.  The Euler angle is then 

output to the file.  When the encoder data was output in the 

same fashion the data was truncated to the 10th’s place for 

an unknown reason.  This is the reason why only the 

MicroStrain sensor data was output.  When the data is 

imported into MATLAB, the encoder data must be converted to 

angles in the same fashion for an accurate analysis between 

the two sensors. 

The final lines of the main function output “Done” to 

the console to indicate to the user the data has been 

written to the file, the program is finished executing, and 

the data may be analyzed by MATLAB.  The last line returns a 

1 to indicate successful operation of the function.  This is 

only included because main is of type int.  The code is seen 

here: 

   79  
   80     cout<<"Done"; 
   81     return 1; 
   82 } 
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2. The Interrupt Service Routine 

The interrupt service routine is the function that is 

executed every time the associated interrupt occurs.  It is 

executed by the interrupt handler.  This sequence of events 

is discussed in the previous section.  It is very important 

that the interrupt service routine, ISR, execute as quickly 

as possible.  No extraneous code or unneeded processing must 

be performed in the ISR.  It has been discovered that the 

interrupt service routine, under the specific conditions, 

operating system, and PC104 used in this project, must not 

contain any floating point operations.  Floating point 

operations cause the PC104 and the QNX OS to lock up and a 

hard reset is needed to continue any further use of the 

computer.  The reason may be that floating point operations 

are very time intensive causing the interrupt service 

routine execution time to be large enough that a new 

interrupt interrupts its own interrupt service routine. 

The basic function of the ISR is to read characters off 

the UART receiver buffer, read the encoder after the last 

character is received, piece together the corresponding data 

from the UART and finally save all data in arrays for each 

sensor. 

The first lines of the code are here: 

   16 int isr4_routine() 
   17 { 
   18     if(SerialBit<11) SerialBuffer[SerialBit]=in8(sbase + 0); 

//read a character off buffer 

The basic idea here is that if the index of the 

character being received from the UART buffer is less than 

11, meaning the full data packet has not yet been received 

from the MicroStrain sensor, the character recorded in the 
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SeriaBuffer array, at the appropriate index.  When a 

character is read off the buffer the UART interrupt is reset 

and waits for another character.  Continuing the routine: 

   19     if(SerialBit==10) //Get all Encoder Data and calc roll pitch 
and yaw 

   20     { 
   21         SetOEBits(0,1);//OE1 Low 
   22         while(in8(base + 9) & 1){} 
   23         SetOEBits(1,1);//OE1 High   
   24         //1.8us 
   25         SetOEBits(0,1);//OE1 Low 
   26         while(in8(base + 9) & 1){} 
   27         EncoderValue[DataIndex]=in8(base + 8); //read LSB 
   28         SetOEBits(1,1);//OE1 High 
   29         //1.6us 
   30         SetOEBits(1,0);//OE2 Low   
   31         while(in8(base + 9) & 1){}       
   32         EncoderValue[DataIndex]=EncoderValue[DataIndex]+in8(base 

+ 8)*256; //read MSB 
   33         SetOEBits(1,1);//OE2 High 
   34  
   35         calcnewnums(); 
   36     } 

This section of code is where the encoder is latched 

and read.  It is only executed when all the bytes of the 

MicroStrain sensor have been received first; when 

SerialBit==10.  It is recorded after the last character is 

received because the time from the MicroStrain sensor 

position latch and the last character output is known.  This 

means the encoder data can be shifted by a known amount to 

match encoder position to MicroStrain sensor position almost 

exactly in time.  The code above is the recoding sequence of 

the 16-bit encoder, as discussed in the section on the 

encoder.  SetOEBits gives the program a way to indicate 

which byte of data is needed and also when to latch the 

encoder position.  OE1 is actually taken low then high twice 

in this code.  It was discovered that the value outputted by 

the encoder is actually the value that was latched one latch 

previous.  This means to get the position of the encoder at 

the exact time it was read the encoder has to be latched 
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twice to get the correct data.  If the encoder is not 

latched twice the data for the current position will not be 

outputted until the next read.  The data outputted at the 

current read will be the data for the position at the 

previous read.  The reason for this is unknown, however, it 

was proven that the data outputted was the previous data 

latch’s position.  The intermixed while statements poll the 

port B DIO looking for DA of the encoder to go low.  As soon 

as this happens the data on the data lines from the encoder 

become valid and may be read.  The time between lines of 

code seen in comment at line 29 is enough time to satisfy T2 

and T3 of the encoder timing diagram.  Further delay is not 

necessary for the encoder to function properly.  The least 

significant byte of the position is read first, followed by 

the most significant byte.  This is the reason the data read 

in line 32 is multiplied by 256 and then added to the least 

significant byte.  The data is stored in the EncoderValue 

array.  This array holds all the successive encoder 

readings.  When the encoder is finished reading, the 

MicroStrain sensor data is then converted into useable 

numbers by calcnewnums().  The code for this function is 

seen here: 

  103 void calcnewnums(void) 
  104 { 
  105         dataid=SerialBuffer[0]; 
  106         roll=SerialBuffer[1]*256 + SerialBuffer[2]; 
  107         if(roll>=32768) roll=(-1)*(65536-roll); 
  108         pitch=SerialBuffer[3]*256 + SerialBuffer[4]; 
  109         if(pitch>=32768) pitch=(-1)*(65536-pitch); 
  110         yaw=SerialBuffer[5]*256 + SerialBuffer[6]; 
  111         if(yaw>=32768) yaw=(-1)*(65536-yaw); 
  112         timerticks=SerialBuffer[7]*256 + SerialBuffer[8]; 
  113         checksum=SerialBuffer[9]*256+SerialBuffer[10]; 
  114 } 

This function combines and stores the current roll, 

pitch, and yaw Euler angles from the MicroStrain sensor in 
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respective variables.  The dataid should be the code for the 

data requested.  In this case it is 14 or 0x0E.  The roll, 

pitch, and yaw data most significant bytes and least 

significant bytes are combined into one number to represent 

each angle in a 16-bit form.  The data outputted by the 

sensor is in two’s compliment form.  The if statement 

converts the numbers from a two’s compliment into a signed 

integer form for ease of conversion to degrees later. 

The interrupt service routine then continues by 

increasing the SerialBit variable by 1.  This is used to 

track the number of characters taken off the buffer for the 

current data pack:  

   37     SerialBit++; 
   38     if(SerialBuffer[0]!=14) SerialBit=0; //reset because of 

invalid data 
   39     if((SerialBit==11)&&(DataIndex<DataSetSize)) 
   40     { 
   41         SerialBit=0; //rollover for next data set 
   42         rollnums[DataIndex]=roll; 
   43         DataIndex++; 
   44     } 
   45  
   46     return 1; 

   47 } 

The if statement in line 38 will reset the data pack if 

the first character received is not a 14, or 0x0E.  It is 

expected that the first character of every new data packet 

will be this value because of the standard set by the 

MicroStrain sensor.  The first set of the data packet sent 

will be command code for the data requested.  In this 

project, the gyro-stabilized Euler angles are requested for 

which the command code is 0x0E.  If the ISR places any 

character other than a 0x0E in the first index of the buffer 

array the index is reset.  This will happen until 0x0E is 

found in the first index of the buffer.  At this time, the 
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ISR knows that it is the start of a new valid data pack and 

will allow the index to increment. 

Line 39 starts the routine if a complete data packet 

has been received.  In this case the SerialBit should be 11, 

indicating 11 characters were read off the buffer, and the 

current data packet index is less than the size of the data 

set requested.  If the while loop in the main function does 

not exit and the interrupt detached, it would be undesirable 

for data to continue to be recorded.  When DataIndex is 

equal to or greater than DataSetSize, the ISR knows that all 

the requested data has been processed and recorded; no 

further data is needed.  Line 42 records the roll angle of 

the current reading into the array that will be output to 

the file later.  Finally, the index of the data is 

incremented so when the ISR records the next set of data it 

will be placed in the next element of the two arrays.  The 

ISR returns a 1, meaning the interrupt was processed 

correctly. 

3. 10-Bit Encoder Program Differences 

There were a few differences between the 16-bit encoder 

program described previously and the 10-bit encoder program.  

The main difference was the data collection method.  The 10-

bit encoder program used the polling method of MicroStrain 

data collection.  This method is useful for a non-

deterministic application, but for this application, the 

time between readings needs to be exact.  The other 

difference was that the encoder was read when the request 

for data was sent out.  This means the time difference 

between the returned data from the MicroStrain sensor and 

the encoder reading could be anywhere from 0-13ms of 
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difference.  The sensor would receive the request sometime 

during the current calculation cycle and then output that 

data.  Since there is no way of knowing where in the 

calculation cycle the sensor is, there is no way of 

determining the time between the encoder reading and the 

sensor reading.   

Another major difference in the two programs is the 

reading method of the encoder.  Since the 10-bit encoder 

outputs data in a parallel method and there is minimal 

calculation time, the data from the encoder can be read all 

at once.  This means the DIO of the PC104 reads all 10 bits 

at once.  The 8 least significant bits are on port A and the 

2 most significant bits are on port B.  The data collected 

by the PC104 from the encoder will also have to be converted 

before output to the file.  This is because the encoder 

outputs in grey code.  This must be converted to a binary 

number and then converted to the final respective degree. 

C. RESULTS 

Many tests were performed.  They included testing the 

10-bit encoder at a pendulum length of two feet, 16-bit at 

one, two, and three foot lengths, and the pitch and yaw 

angles of the 16-bit encoder at a two foot length.  The 

results were all very similar.  There were definite 

characteristics present that were expected, but also some 

that were newly discovered.  All of the results proved the 

3DM-GX1 sensor does have the capability of operating within 

the specifications put forth by the MicroStrain company, 

under the speed conditions tested.  A faster moving sensor 

may produce a larger error.  Since the MicroStrain sensor 

and the encoder zero positions do not match, the test was 
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started at the zero position for the first approximately 100 

time samples and then the pendulum was put into motion.  

This period of no motion at the zero point allows the 

possibility to match the data up, based on this zero 

position.  When the data is imported into MATLAB the mean of 

this rest period is taken for each data set.  The mean is 

then subtracted from each data point to align the two 

sensors around zero degrees.  The result of this is two sets 

of data that track the same degree position over time.  

After this, the error between the two sensors can be 

calculated.  This procedure is performed for every plot of 

the data sets in this section. 

 The results from the 10-bit encoder can be seen in 

Figure 14.   
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Figure 14.   10-Bit Encoder and 3DM-GX1 Sensor Results.  

The absolute difference is magnified by a gain of 20 in 
the plot. 

 

This test was performed by allowing the pendulum to 

rest at the zero point for about 100 samples.  The pendulum 

was then lifted and released by hand.  The data collected 

with this sensor indicated that the largest error was only 

.8507°.  This occurred at sample 867.  The “Absolute 

Difference” is the absolute value of the difference between 

the readings of the two sensors for the same sample.  The 

value is then multiplied by a gain of 20 so it would be 

easier to analyze on the same plot as the data.  The mean 

line is the mean of this difference over the entire sample 

set.  This line is there for reference purposes of the 
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difference data.  The MicroStrain sensor data in this 

example is shifted to the left by one sample.  The method of 

data sampling used for this data collection does not ensure 

that the data matches at each sample period because the 

MicroStrain sensor reading is not guaranteed.   Polling was 

used, so the reading associated with the time sample has the 

possibility of being one time sample ahead of the encoder, 

in position.  This means at time “x”, the encoder was at the 

correct position, but the MicroStrain sensor reading at time 

“x” could be the reading that was supposed to be associated 

with time “x+1” of the encoder.  This problem was solved 

with the 16-Bit encoder because the data collection was more 

deterministic and accurate.  Another problem with the data 

collected by the 10-Bit encoder is the relation between the 

test bench, the encoder, and the MicroStrain sensor. 

 The test bench must have 16-bits of accuracy or 

better since the MicroStrain sensor has this degree of 

accuracy.  The limited resolution of the 10-bit encoder is 

the cause of the stair characteristic of the zoomed view of 

the results plot in Figure 15.  This was the motivation to 

move to the more accurate 16-bit absolute encoder. 



 86

 
Figure 15.   Zoomed View of 10-Bit Encoder and 3DM-GX1 

Results. 
 

The MicroStrain sensor was tested at three different 

lengths, one foot, two feet, and three feet.  All of these 

results had very distinct characteristics that were more 

well defined in each test.  All of the plots from this point 

on were generated in MATLAB using the same process.  The 

major point that must be realized is the shift of the 

encoder data. 

The data in the 10-bit encoder example was shifted, as 

it was for the 16-bit encoder, but the shift in the 16-bit 

encoder was much more accurate.  The basic process of the 

MicroStrain sensor computation is to read all of the 

sensors, convert to a digital value, perform Euler 

calculations, and finally output on the RS-232 line.  This 
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process repeats continuously as long as the sensor is 

powered on and the command signal requests the Euler angles.  

The sensor deterministically starts a new calculation every 

13.107ms.  Therefore, it is known with relative assurance 

that at approximately the time the last character of the 

data is sent out of the sensor the next calculation is 

started.  The sensor is read at the beginning of the cycle 

and the encoder is latched at this time.  Thus, it can be 

said with relative assurance that the encoder position is 

13.107ms later than the corresponding MicroStrain position, 

since  This means the encoder position must be shifted back 

by 13.107ms to relate the positions at the exact time 

instead of the corresponding sensor sample.  The position of 

the encoder does not have to be estimated at the time which 

is 13.107ms in the past, though, because it is known that 

the previous encoder position read was exactly 13.107ms in 

the past because the calculation cycle time of the 

MicroStrain sensor that is driving the data collection is 

13.107ms.  The un-shifted data can be found in Figure 16.   
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Figure 16.   Un-shifted Encoder and MicroStrain Sensor 

Data. 
 

The un-shifted data is the data that is received 

without the time correlation shift.  It can be seen that the 

corresponding data has a gap of one time sample.  The 3DM-

GX1 data reaches a certain degree one time sample later than 

the encoder data.  This time sample is the 13.107ms 

difference described earlier.  To better analyze this data, 

the data must be shifted first. 

In this project, instead of shifting the encoder 

position back 13.107ms in the past, the MicroStrain sensor 

data is shifted to correspond to the encoder data.  This is 

accomplished by shifting the entire MicroStrain sensor data 

one index to the left, effectively matching the currently 
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calculating sensor position with the encoder position at 

that same time.  This erases the effect of the calculation 

cycle delay at the expense of loosing the first MicroStrain 

sensor data point read by the system.  Once this data is 

matched up by time instead of sample, the data can be 

analyzed more accurately.  This is exactly what was done in 

all of the following examples.  The following plots are the 

one, two, and three feet test results. 

 
Figure 17.   One Foot Pendulum Data. The absolute 

difference is multiplied by a gain of 20. 
 

The data in the above plot is the data for the system 

when the pendulum is one foot in length.  The mean line in 
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this and all the following plots is the mean of the error.  

It was included to serve as a reference point for the error 

analysis.  Accounting for the fact that the error is scaled 

by a gain of 20, is can be seen that the error is above 1° 

at various time points.  The largest error is 1.3019° at 

sample 215.  This error is within the specification of the 

MicroStrain sensor.  The magnitude of the error also follows 

the expected pattern.  It is expected that when the pendulum 

is moving the slowest there should be the least amount of 

error.  This is because as the pendulum slows down, it 

approaches a static state.  The static accuracy magnitude of 

the sensor is less than 0.5° of error.  The position where 

the pendulum is the slowest is when it is changing direction 

at the extremes.  Looking at the above plot, it can be seen 

that this is exactly what happens, as the pendulum 

approaches the maximum or minimum the error approaches 0.   

Another curiosity observed is that the error is 

actually almost a direct function of the velocity.  This can 

be observed in Figure 18.   
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Figure 18.   Zoomed View of One Foot Plot.  The velocity 

has a gain of 20 and the absolute difference has a gain 
of 60. 

 

In this plot, the absolute value of the error is not 

taken.  The error data is the actual error, this time scaled 

by 60, not 20.  This scale was used to more closely match 

the peaks of the curves.  The velocity is the plot of the 

velocity of the encoder curve.  This was found by taking the 

derivative of the encoder curve because velocity is the 

derivative of position.  The derivative curve in the plot 

also has a gain of 20.  This was used to match the tops of 

the curves so a visual analysis could be performed.  In 

reality, the derivative curve is much smaller because the 

gradient function in MATLAB was used.  This plot indicates 

that the equation for the error may not be the velocity 

exactly, but it is very similar.  The exact reason for this 

error is not known. 
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Figure 19.   Two Foot Pendulum Data. The absolute 

difference is multiplied by a gain of 20. 

 

The two foot plot is very similar to the one foot plot.  

This two foot plot can be found in Figure 19.  The recorded 

max error is much better though.  The max error is .7459° at 

sample 561.  This is again within the specifications for the 

MicroStrain sensor.  This is most likely because the 

pendulum is moving slower.  As the pendulum length 

increases, the speed of oscillation decreases.  Holding the 

correlation discovered for the previous test, this is what 
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was expected; the slower the velocity, the more accurate the 

readings.  There is one slight difference though.  There is 

a small camel back at the peaks of all the error curves.  A 

more pronounced view is seen in Figure 20.   

 
Figure 20.   Zoomed View of Two Foot Plot.  The velocity 

has a gain of 20 and the absolute difference has a gain 
of 60. 

 

The camel back could be caused by two possible effects.  

It is possible that the acceleration has a small part in the 

equation for the error.  This would account for the camel 

back because at the camel backs, the acceleration is zero.  

The acceleration would have to be inversely related to the 

velocity.  That is, when the velocity magnitude is greater, 

the acceleration would have less of an effect.  This would 

account for the differences between this plot and the plot 

of the one foot test.  In the one foot test the velocity is 

greater, meaning the acceleration has less of an impact.   
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This would allow the one foot curve to be smooth and the two 

foot curve to have a little camel back when the acceleration 

is zero. 

The second cause of the camel back could be due to the 

flexure of the pendulum shaft.  The shaft is made from wood 

and has a small spring characteristic in it.  As the 

pendulum swings the shaft may flex slightly.  The longer the 

pendulum, the larger the flex.  The flex would also be 

periodic because of the spring like characteristic of wood.  

When the wood is flexed in one direction it will reverse the 

flex in the other direction when the force holding the flex 

is overcome.  This motion would create a periodic motion, 

which is exactly what the camel back is.  If this is the 

cause of the camel back, the camel back found here should be 

more pronounced in the three foot test, because the pendulum 

is longer and has more ability to flex. 

The three foot test results can be seen in Figure 21.   



 95

 
Figure 21.   Three Foot Pendulum Data.  The absolute 

difference is multiplied by a gain of 20. 
 

The maximum error for the three foot test is .6820° at 

sample 984.  Once again, as can be expected, the sensor 

error is well within the MicroStrain specifications.  The 

plot clearly shows the MicroStrain sensor’s position very 

closely matches the encoder position for the entire path of 

motion.  There is some peculiarity in this plot as well 

though.  In this plot the error data does not seem to have 

much correlation to the position at all.  It certainly does 

not have any correlation to the velocity, as seen in Figure 

22.   
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Figure 22.   Zoomed View of Three Foot Plot.  The velocity 

and the acceleration both have a gain of 20 and the 
absolute difference has a gain of 60. 

 

On the above plot, the acceleration was plotted.  This 

is the second derivative of position and in this plot the 

second derivative of the encoder data.  A gain was applied 

to the curve for visual analysis.  A mean filter was also 

applied to the curve to make it smoother.  The filter took 

the average of a point and the one immediate point on each 

side of it to create a new point.  This process was applied 

to every point which resulted in a much smoother curve.  It 

is very peculiar that error curve for this length is very 

similar to the acceleration curve of the pendulum.  This is 

what was expected though, based on the theories developed 

with the one and two foot tests.  The differences between 

the acceleration curve and the error curve are relatively 

small, suggesting a relationship.  The differences could be 

due to the flexure of the rod as discusser earlier. 

The overall results indicate that the error of the 

MicroStrain sensor is very likely a function of the 
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velocity, acceleration, and flexure of the pendulum rod.  

The faster the pendulum moves the more influence the 

velocity has.  As the movement of the pendulum slows, the 

acceleration starts to have more of an influence on the 

error.  The longer the pendulum, the more flexure and 

associated error influence.  The error from the one foot 

test to the three foot test seems to have a logarithmic 

property.  This could be caused by the changes in factors 

influencing the error.  This may also be a clue to the 

relationship of acceleration, velocity, and flexure to the 

error of the MicroStrain sensor.  It also indicates the 

possibility of the MicroStrain sensor error eventually 

becoming larger than the specifications indicate.  The exact 

point where this may occur is not known because there is no 

formula for the error relationship, only clues that could 

eventually lead to one.  It is also possible that the error 

will remain within specifications until the sensor’s motion 

moves outside the maximum angular rate specification of the 

sensor.  At this point it is expected that the error and 

other measurements will not be accurate. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The purpose of this project was to develop a control 

systems environment complete with encoder capabilities on a 

PC104.  The system capabilities were tested by using it to 

measure the dynamic accuracy of the MicroStrain 3DM-GX1 

orientation sensor against the benchmark of an encoder.  The 

digital input/output and the digital-to-analog conversion 

circuits and the RS-232 port of the PC104 were used to 

accomplish this task.   

In this project, a Diamond Systems Prometheus PC104 

with a data acquisition circuit was used as a target 

machine.  The main encoder used was a 16-bit absolute 

encoder by Gurley Precision Instruments.  The encoder 

communication and control was performed with the digital 

input/output circuit.  The MicroStrain 3DM-GX1 sensor 

communications all occurred through the RS-232 port.  The 

MicroStrain sensor was attached to the end of a wooden 

pendulum and the encoder served as the pivot point of this 

pendulum.  This allowed the angles of the two sensors to 

move synchronously with one another.  The pendulum was set 

in motion and the position of the two sensors were recorded 

and outputted to a MATLAB compatible file. 

The results yielded an error of the MicroStrain sensor 

well within the specifications established by the company.  

The worst error was 1.3019° when the pendulum was at a  
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length of one foot.  It was discovered that the error is a 

function of the velocity, acceleration, and flexure of the 

pendulum. 

B. RECOMMENDATIONS 

Further work would be deriving an error equation for 

the MicroStrain sensor.  This would be useful in any 

application that uses this sensor because it may allow the 

user to compensate for the error, virtually erasing it.  An 

encoder board could also be added to the PC104 system to 

allow interaction with the incremental encoder and multiple 

encoders at once.  The system also can be used to test the 

dynamic accuracy of other inertia-based orientation sensors. 
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APPENDIX A: 16-BIT ENCODER C++ CODE 

 
    1 #include <control/control.wse> 
    2  
    3 #define sbase 0x3F8 
    4 int SerialBit,DataIndex,DataSetSize; 
    5 int roll,pitch,yaw,dataid,timerticks,checksum; 
    6 void SerComInit(void); 
    7 void calcnewnums(void); 
    8 volatile signed rollnums[100000]; 
    9 volatile signed SerialBuffer[11]; 
   10 volatile signed EncoderValue[100000]; 
   11 void SendInstantEulerAngleCONT(void); 
   12 void StopCONTmode(void); 
   13 void FileOutput(void); 
   14 void SetOEBits(int,int); 
   15  
   16 int isr4_routine() 
   17 { 
   18     if(SerialBit<11) SerialBuffer[SerialBit]=in8(sbase + 0); 

//read a character off buffer 
   19     if(SerialBit==10) //Get all Encoder Data and calc roll pitch 

and yaw 
   20     { 
   21         SetOEBits(0,1);//OE1 Low 
   22         while(in8(base + 9) & 1){} 
   23         SetOEBits(1,1);//OE1 High   
   24         //1.8us 
   25         SetOEBits(0,1);//OE1 Low 
   26         while(in8(base + 9) & 1){} 
   27         EncoderValue[DataIndex]=in8(base + 8); //read LSB 
   28         SetOEBits(1,1);//OE1 High 
   29         //1.6us 
   30         SetOEBits(1,0);//OE2 Low   
   31         while(in8(base + 9) & 1){}       
   32         EncoderValue[DataIndex]=EncoderValue[DataIndex]+in8(base 

+ 8)*256; //read MSB 
   33         SetOEBits(1,1);//OE2 High 
   34  
   35         calcnewnums(); 
   36     } 
   37     SerialBit++; 
   38     if(SerialBuffer[0]!=14) SerialBit=0; //reset because of 

invalid data 
   39     if((SerialBit==11)&&(DataIndex<DataSetSize)) 
   40     { 
   41         SerialBit=0; //rollover for next data set 
   42         rollnums[DataIndex]=roll; 
   43         DataIndex++; 
   44     } 
   45  
   46     return 0; 
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   47 } 
   48  
   49 int main() 
   50 { 
   51     BoardInit() 
   52  
   53     out8(base + 11, 0xFE); //set all DIOA DIOB to input DIOClow 

Output 
   54     out8(base+10,0x03);//OE1 OE2 high 
   55  
   56     SerialBit=0; 
   57     DataIndex=0; 
   58     DataSetSize=1000; 
   59  
   60     SerComInit(); 
   61     StopCONTmode(); 
   62     ISR4Init(); 
   63  
   64     SendInstantEulerAngleCONT(); 
   65  
   66     while(DataIndex<DataSetSize) 
   67     { 
   68         if(checksum==dataid+roll+pitch+yaw+timerticks) 
   69         { 
   70             cout<<"Its good data"<<endl; 
   71         } 
   72         else cout<<"BAD DATA!!!!"<<checksum<<"  

"<<dataid+roll+pitch+yaw+timerticks<<endl; 
   73     } 
   74  
   75     //stop continuous mode 
   76     StopCONTmode(); 
   77     InterruptDetach(isr4handid); 
   78     FileOutput(); 
   79  
   80     cout<<"Done"; 
   81     return 1; 
   82 } 
   83  
   84 int isr_routine(void) 
   85 { 
   86     return 0; 
   87 } 
   88  
   89 /*Initialize COM with 
   90  * 384000 baud 
   91  * 1,N,8 */ 
   92 void SerComInit(void) 
   93 { 
   94     out8(sbase + 4, 0x09); //MCR data terminal ready 
   95     out8(sbase + 3, 0x83); //enable latch for baud rate set 
   96     out8(sbase + 0, 0x03); //lower baud divisor 
   97     out8(sbase + 1, 0x00); //upper baud divisor 
   98     out8(sbase + 3, 0x03); //disable latch, 1,N,8 
   99     out8(sbase + 2, 0x07); //set FIOF to 1 character 
  100     out8(sbase + 1, 0x15); //enable recv interupt 
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  101 } 
  102  
  103 void calcnewnums(void) 
  104 { 
  105         dataid=SerialBuffer[0]; 
  106         roll=SerialBuffer[1]*256 + SerialBuffer[2]; 
  107         if(roll>=32768) roll=(-1)*(65536-roll); 
  108         pitch=SerialBuffer[3]*256 + SerialBuffer[4]; 
  109         if(pitch>=32768) pitch=(-1)*(65536-pitch); 
  110         yaw=SerialBuffer[5]*256 + SerialBuffer[6]; 
  111         if(yaw>=32768) yaw=(-1)*(65536-yaw); 
  112         timerticks=SerialBuffer[7]*256 + SerialBuffer[8]; 
  113         checksum=SerialBuffer[9]*256+SerialBuffer[10]; 
  114 } 
  115  
  116 void SendInstantEulerAngleCONT(void) 
  117 { 
  118     out8(sbase + 0, 0x10); //Command command 
  119     out8(sbase + 0, 0x00); //Null command 
  120     out8(sbase + 0, 0x0E); //Send GYRO Euler Angles command 
  121 } 
  122  
  123 void StopCONTmode(void) 
  124 { 
  125     out8(sbase + 0, 0x10); //Command Command 
  126     out8(sbase + 0, 0x00); //Null Command 
  127     out8(sbase + 0, 0x00); //Null Command 
  128 } 
  129  
  130 void FileOutput(void) 
  131 { 
  132     float myoutf; 
  133     FILE* myfile; 
  134  
  135     myfile=fopen("NewEncoder23.m","w+"); 
  136     fprintf(myfile,"Encoder=["); 
  137     for(int i=0;i<DataSetSize;i++) 
  138     { 
  139         fprintf(myfile," %d\n",EncoderValue[i]); 
  140     } 
  141     fprintf(myfile,"]';"); 
  142  
  143     fprintf(myfile,"\n\nMicroStrain=["); 
  144     for(int i=0;i<DataSetSize;i++) 
  145     { 
  146         myoutf=((float)rollnums[i])*360.0/65536.0; 
  147         fprintf(myfile," %f\n",myoutf); 
  148     } 
  149     fprintf(myfile,"]';"); 
  150 } 
  151  
  152 void SetOEBits(int OE1, int OE2) 
  153 { 
  154     out8(base+10,(OE1 + 2*OE2)); 
  155 } 
 



 104

THIS PAGE INTENTIONALLY LEFT BLANK  

 



 105

APPENDIX B: CONTROL.WSE CODE 

    1 #include <cstdlib> 
    2 #include <iostream> 
    3 #include <stdlib.h> 
    4 #include <stdio.h> 
    5 #include <iomanip.h> 
    6 #include <time.h> 
    7 #include <unistd.h> 
    8 #include <hw/inout.h> 
    9 #include <sys/neutrino.h> 
   10 #include <math.h> 
   11  
   12 #define base 0x280 
   13  
   14 volatile unsigned nums[100000]; 
   15 volatile unsigned isrhandid; 
   16 int frequency; 
   17  
   18 int BoardInit(void); 
   19 int waitforADconversion(void); 
   20 int waitforADsettle(void); 
   21 int DAcheckstatus(void); 
   22 int SendDAC(int , float); 
   23 float GetADVolts(int, int); 
   24 int fileoutput(const char* , int); 
   25 int Timer0Init(int , int, int); 
   26 int Timer0Start(); 
   27 int SetFIFOThreshold(int); 
   28 int ADInit(int,int,int,int,int,int); 
   29 int ClearAnalogInterrupt(void); 
   30 int ResetFIFOdepth(void); 
   31 int isr_routine(void); 
   32 int Binary2Dec(int,int); 
   33 int* Grey2Binary(int,int); 
   34 int* DIO2Grey(int,int); 
   35 int PortAin(void); 
   36 int PortBin(void); 
   37 void SetAllDIO(int); 
   38 const struct sigevent* isr4_handler(void*, int); 
   39 int isr4_routine(void); 
   40 int int4; 
   41 volatile unsigned isr4handid; 
   42 int ISR4Init(void); 
   43  
   44 // This must be run to get root permission at access hardware 
   45 // It also resets the data aquisition board, everything except the 

DAC output 
   46 int BoardInit(void) 
   47 { 
   48     int privity_err; 
   49     privity_err=ThreadCtl( _NTO_TCTL_IO, NULL ); // thread gets 

root permission at access hardware 
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   50     if(privity_err==-1) 
   51     { 
   52         cout<<"can't get root permission"; 
   53         return -1; 
   54     } 
   55     out8(base + 0, 0x40); //reset the board, except the DAC output 
   56     return 1; 
   57 } 
   58  
   59 // This function waits for the AD conversion to happen 
   60 // Returns 0 if successful 
   61 // Reutrns -1 if timed out 
   62 int waitforADconversion() 
   63 { 
   64     int i; 
   65     for(i=0;i<10000;i++) 
   66     { 
   67         if(!(in8(base + 3) & 0x80)) return 0; 
   68     } 
   69     return -1; 
   70 }     
   71  
   72 // This function waits for the AD circuit to settle out\ 
   73 // Returns 0 if successful 
   74 // Returns -1 if timed out 
   75 int waitforADsettle() 
   76 { 
   77     int i; 
   78     for(i=0;i<10000;i++) 
   79     { 
   80         if(!(in8(base + 3) & 0x20)) return 0; 
   81     } 
   82     return -1; 
   83 } 
   84  
   85 // This loops until the DA conversion is completed 
   86 // Returns 0 if successful 
   87 // Returns -1 if timed out 
   88 int DAcheckstatus() 
   89 { 
   90     int i; 
   91     for(i=0;i<10000;i++) 
   92     { 
   93         if(!(in8(base + 3) & 0x10)) return 0; 
   94     } 
   95     return -1; 
   96 } 
   97  
   98 // Output a voltage volts on channel chan  
   99 int SendDAC(int chan, float volts) 
  100 { 
  101     int DAlevel; 
  102     int DAref=10; 
  103     if(volts<-10) volts=-10; 
  104     if(volts>10) volts=10; 
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  105     DAlevel=chan*16384+(volts*2048)/DAref+2048; 
  106     out16(base + 6, DAlevel); 
  107     DAcheckstatus(); 
  108     return 1; 
  109 } 
  110  
  111 float GetADVolts(int chan, int gain) 
  112 { 
  113     int ADvalue; 
  114     float voltage; 
  115     out8(base + 2, chan*16 + chan); //set the channel range 
  116     out8(base + 3, 4*1 + gain); //set scan mode and gain 
  117     waitforADsettle(); 
  118     out8(base + 0, 0x80); //start AD conversion 
  119     waitforADconversion(); 
  120     ADvalue=in8(base + 0) + in8(base + 1) * 256; 
  121     if(ADvalue<32768) voltage= .0000152587890625 * 20 * ADvalue; 
  122     else voltage=.0000152587890625*20 * ADvalue - 20; 
  123     return voltage;     
  124 } 
  125  
  126 int fileoutput(const char* filename, int numsamples) 
  127 { 
  128     FILE* myfile; 
  129     float voltage; 
  130     myfile=fopen(filename,"w+"); 
  131     fprintf(myfile,"Hello=["); 
  132     for(int i=0;i<numsamples;i++) 
  133     { 
  134         if(nums[i]<32768) voltage= .0000152587890625 * 20 * 

nums[i]; 
  135     else voltage=.0000152587890625*20 * nums[i] - 20; 
  136         fprintf(myfile," %f\n",voltage); 
  137     } 
  138     fprintf(myfile,"]';"); 
  139     return 0; 
  140 } 
  141  
  142 //This function initializes Timer0 with a corrected frequency, 

rounding 
  143 //up to the next highest divisor of the input clock 
  144 //freq is desired frequency, input is clock source, gating will 

enable the gating  
  145 //input: 0=10Mhz 1=1Mhz; 
  146 int Timer0Init(int freq, int input, int gating) 
  147 { 
  148     long working1,working2,entry; //workingvalues 
  149     int hexout[3]; 
  150     int regstat; 
  151     entry=10000000/freq; 
  152     frequency=10000000/entry; 
  153     for(int i=0;i<3;i++) 
  154     { 
  155             working1=entry/pow(16.0,2.0*i); 
  156             working2=entry/pow(16.0,2.0*i+2); 
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  157             hexout[i]=working1-256*working2; 
  158     } 
  159     regstat=(in8(base + 4) & 0x20) / 0x20;//check clock input 
  160     if(regstat!=input) //if clock input is not what is desired 
  161     { 
  162         if(input==1) out8(base + 4, (in8(base + 4)) + 0x20); //set 

it to 1Mhz 
  163         else out8(base + 4, (in8(base + 4)) - 0x20); //set it to 

10Mhz 
  164     } 
  165  
  166     out8(base + 12, hexout[0]); //low value 
  167     out8(base + 13, hexout[1]);//mid value 
  168     out8(base + 14, hexout[2]);//high value 
  169     out8(base + 15, 0x02);//load value 
  170     //out8(base + 15, 0x04);//start counting 
  171  } 
  172  
  173  //start Counter0, Timer0Init must be run first 
  174  int Timer0Start(void) 
  175  { 
  176     out8(base + 15, 0x04); 
  177  } 
  178  
  179 //sets the threshold of the FIFO 
  180 int SetFIFOThreshold(int depth) 
  181 { 
  182     out8(base + 5, depth); 
  183 } 
  184  
  185  int ADInit(int lowchan, int highchan, int scan, int interrupt, 

int trigger, int gain) 
  186 { 
  187     int regstat,input; 
  188     if(lowchan>highchan) cout<<"Error: The AD high channel is 

lower than the low channel"<<endl; 
  189     else if((lowchan<0) || (lowchan>15)) cout<<"Error: The AD low 

channel is either less than 0 or greater than 15"<<endl; 
  190     else if((highchan<0) || (highchan>15)) cout<<"Error: The AD 

high channel is either less than 0 or greater than 15"<<endl; 
  191     else if((scan<0)||(scan>1)) cout<<"Error: The AD scan value is 

invalid"<<endl; 
  192     else if((interrupt<0)||(interrupt>1)) cout<<"Error: The AD 

interrupt value is invalid"<<endl; 
  193     else if((trigger<0)||(trigger>1)) cout<<"Error: The AD trigger 

value is invalid"<<endl; 
  194     else if(!((gain==1)||(gain==2)||(gain==4)||(gain==8))) 

cout<<"Error: The AD gain value is invalid"<<endl; 
  195     else 
  196     { 
  197         out8(base + 2, lowchan+16*highchan); //set the channel 

range 
  198         out8(base + 3, 4*scan+logf(gain)/log(2.0)); //set the gain 

and scan mode 
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  199         regstat=(in8(base + 4) & 0x10) / 0x10; //check AD trigger 
source 

  200         if(regstat!=trigger) //if trigger source is not what is 
desired 

  201         { 
  202             if(trigger==1) out8(base + 4, (in8(base + 4)) + 0x10); 

//set it to external clock input 
  203             else out8(base + 4, (in8(base + 4)) - 0x10); //set it 

to Counter0 
  204         } 
  205         regstat=(in8(base + 4) & 0x01) / 0x01; //check interrupt 

enable 
  206         if(regstat!=interrupt) //if interrupt enable is not what 

is desired 
  207         { 
  208             if(interrupt==1) out8(base + 4, (in8(base + 4)) + 

0x01); //enable interrupt 
  209             else out8(base + 4, (in8(base + 4)) - 0x01); //disable 

interrupt 
  210         }     
  211         waitforADsettle(); //let the AD converter to settle out     
  212         return 1; 
  213     } 
  214     cout<<"ADInit Error, program many not execute as 

expected"<<endl; 
  215     return 0; 
  216 } 
  217  
  218  
  219 int ClearAnalogInterrupt(void) 
  220 { 
  221     out8(base + 0, 0x01); 
  222     return 1; 
  223 } 
  224  
  225 int ResetFIFOdepth(void) 
  226 { 
  227     out8(base + 0, 0x10); 
  228     return 1; 
  229 } 
  230  
  231 int ADvalue(void) 
  232 { 
  233     return (in16(base + 0)); 
  234 } 
  235  
  236 int NormADvalue(void) 
  237 { 
  238     int AD; 
  239     AD=in16(base + 0); 
  240     if(AD<32768) return AD; 
  241     else return (65535-AD)*(-1); 
  242 } 
  243  
  244 int isrSendDAC(int chan, int output) 
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  245 { 
  246     output=output+2048; 
  247     if(output>4095) output=4095; 
  248     if(output<0) output=0; 
  249     out16(base + 6, (chan*16384+output)); 
  250     DAcheckstatus(); 
  251     return 1; 
  252 } 
  253  
  254 /* The hardware interrupt handler */ 
  255 const struct sigevent* isr_handler(void *arg, int intr) 
  256   { 
  257     isr_routine(); 
  258     InterruptUnmask(5,isrhandid); 
  259   } 
  260  
  261 int ISRInit(void) 
  262 { 
  263         isrhandid=InterruptAttach(5,isr_handler, NULL, 0, 

_NTO_INTR_FLAGS_TRK_MSK); 
  264         return 1; 
  265 } 
  266  
  267 int ISRStop(void) 
  268 { 
  269     InterruptDetach(isrhandid); 
  270     return 1; 
  271 } 
  272  
  273 int CheckFIFOOVF(void) 
  274 { 
  275     return ((in8(base+3)&0x08)/0x08); 
  276 } 
  277  
  278 /*Convert a binary number into decimal*/ 
  279 int Binary2Dec(int* Binary,int size) 
  280 { 
  281     int Decimal; 
  282     Decimal=0; 
  283     for(int i=0;i<size;i++) 
  284     { 
  285         //the Binary array member must be referenced by 
  286         //*(Binary+i) 
  287         Decimal=Decimal+(*(Binary+i))*(int)(pow(2.0,i)); 
  288     } 
  289     return Decimal; 
  290 } 
  291  
  292 /*Convert a grey code number into binary*/ 
  293 int* Grey2Binary(int* Grey,int size) 
  294 { 
  295     int* Binary = new int[size]; //this is needed for proper 

return 
  296     //Fill Binary with all 1's 
  297     for(int i=0;i<size;i++) 
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  298     { 
  299         Binary[i]=1; 
  300     } 
  301     //Start Conversion 
  302     Binary[size-1]=*(Grey+(size-1)); 
  303     for(int i=size-1;i>0;i--) 
  304     { 
  305         //Grey array must be referenced by *(Grey+i) 
  306         if(Binary[i]==(*(Grey+(i-1))))   Binary[i-1]=0; 
  307     } 
  308     return Binary; //return binary number 
  309 } 
  310  
  311 /*convert the DIO raw number into grey code*/ 
  312 int* DIO2Grey(int DIO, int size) 
  313 { 
  314         int* Grey = new int[size]; //this is needed for the proper 

return for array 
  315  
  316         //Strip off bits through masking 
  317         Grey[0]=((DIO & 1)==1); 
  318         Grey[1]=((DIO & 2)==2); 
  319         Grey[2]=((DIO & 4)==4); 
  320         Grey[3]=((DIO & 8)==8); 
  321         Grey[4]=((DIO & 16)==16); 
  322         Grey[5]=((DIO & 32)==32); 
  323         Grey[6]=((DIO & 64)==64); 
  324         Grey[7]=((DIO & 128)==128); 
  325         Grey[8]=((DIO & 256)==256); 
  326         Grey[9]=((DIO & 512)==512); 
  327  
  328         return  Grey; //return the grey code 
  329 } 
  330  
  331 /*Reads PortA*/ 
  332 int PortAin(void) 
  333 { 
  334     int read; 
  335     read=in8(base + 8); //read port A 
  336     return read; 
  337 } 
  338  
  339 /*Reads PortB*/ 
  340 int PortBin(void) 
  341 { 
  342     int read; 
  343     read= in8(base + 9); //read port B 
  344     return read; 
  345 } 
  346  
  347 /*Set all the DIO ports to input/output, 1=in 0=out*/ 
  348 void SetAllDIO(int inout) 
  349 { 
  350     if(inout==1) out8(base + 11, 0xFF); //make all DIO ports input 
  351     else out8(base + 11, 0x00); //Make all DIO ports output 
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  352 } 
  353  
  354 /*IRQ 4 Handler*/ 
  355 const struct sigevent* isr4_handler(void *arg, int intr) 
  356 { 
  357     isr4_routine(); //ISR routine 
  358     InterruptUnmask(4,isr4handid); //Enable IRQ 4 
  359 } 
  360  
  361 /* Initialize IRQ 4 handler*/ 
  362 int ISR4Init(void) 
  363 { 
  364     isr4handid=InterruptAttach(4,isr4_handler, NULL, 0, 

_NTO_INTR_FLAGS_TRK_MSK);  
  365 } 
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